Skip to main content

Advertisement

Log in

Covalent docking in CDOCKER

  • Correspondence
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Targeted covalent inhibitors (TCIs) are considered to be an important component in the toolbox of drug discovery and about 30% of currently marketed drugs are TCIs. Although these drugs raise concerns about toxicity, their high potencies and prolonged effects result in less-frequent drug dosing and wide therapeutic margins for patients. This leads to increased interests in developing new computational methods to identify novel covalent inhibitors. The implementation of successful in silico docking algorithms have the potential to provide significant savings of time and money in the discovery of lead compounds. In this paper, we describe the implementation and testing of a covalent docking methodology in Rigid CDOCKER and the optimization of the corresponding physics-based scoring function with an additional customizable covalent bond grid potential which represents the free energy change of bond formation between the ligand and the receptor. We optimize the covalent bond grid potential for different common covalent bond formation reaction in TCIs. The average runtime for docking one covalent compound is 15 minutes which is comparable or faster than other well-established covalent docking methods. We demonstrate comparable top rank accuracy compared with other covalent docking algorithms using the pose prediction benchmark dataset for covalent docking algorithms developed by the Keserű group. Finally, we construct a retrospective virtual screening benchmark dataset containing 8 different receptor targets with different covalent bond formation reactions. To our knowledge, this is the largest dataset for benchmarking covalent docking methods. We show that our new covalent docking algorithm has the ability to identify lead compounds among a large chemical space. The largest AUC value is 0.909 for the target receptor CATK and the warhead chemistry of the covalent inhibitors is addition to the aldehyde functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The Supporting Information (Virtual screening dataset construction; Ligand preparation workflow; Covalent docking searching algorithm; Pose prediction results.) is available free of charge via the Internet. CHARMM license is free for academic users. The full source code and license information for CHARMM are available at http://charmm.chemistry.harvard.edu/ The benchmark dataset and code examples are provided on Github https://github.com/wyujin/Covalent-Docking-in-CDOCKER and are listed below\(\bullet\)Example of covalent docking in CDOCKER with CHARMM scripting language\(\bullet\)Example of covalent docking in pyCHARMM CDOCKER;\(\bullet\)SMILES strings of the retrospective virtual screening datasets used in this study;\(\bullet\)Pose prediction result (rank-result.tsv);\(\bullet\)Scripts for general ligand preparation.

References

  1. Kumalo HM, Bhakat S, Soliman ME (2015) Theory and applications of covalent docking in drug discovery: merits and pitfalls. Molecules 20(2):1984–2000

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baillie TA (2016) Targeted covalent inhibitors for drug design. Angew. Chem. Int. Ed. 55(43):13408–13421

    Article  CAS  Google Scholar 

  3. Scarpino A, Ferenczy GG, Keserű GM (2020) Covalent docking in drug discovery: Scope and limitations. Curr. Pharm, Des

  4. Wan X, Yang T, Cuesta A, Pang X, Balius TE, Irwin JJ, Shoichet BK, Taunton J (2020) Discovery of lysine-targeted eif4e inhibitors through covalent docking. JACS 142(11):4960–4964

    Article  CAS  Google Scholar 

  5. Chowdhury SR, Kennedy S, Zhu K, Mishra R, Chuong P, Nguyen A-U, Kathman SG, Statsyuk AV (2019) Discovery of covalent enzyme inhibitors using virtual docking of covalent fragments. Bioorg. Med. Chem. 29(1):36–39

    Article  CAS  Google Scholar 

  6. Shraga A, Olshvang E, Davidzohn N, Khoshkenar P, Germain N, Shurrush K, Carvalho S, Avram L, Albeck S, Unger T et al (2019) Covalent docking identifies a potent and selective mkk7 inhibitor. Cell Chem. Biol. 26(1):98–108

    Article  CAS  PubMed  Google Scholar 

  7. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug 3(11):935–949

    Article  CAS  Google Scholar 

  8. Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in computational docking: 2009 in review. J. Mol. Regonit. 24(2):149–164

    Article  CAS  Google Scholar 

  9. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des. 16(3):151–166

    Article  CAS  PubMed  Google Scholar 

  10. London N, Miller RM, Krishnan S, Uchida K, Irwin JJ, Eidam O, Gibold L, Cimermančič P, Bonnet R, Shoichet BK et al (2014) Covalent docking of large libraries for the discovery of chemical probes. Nat. Chem. Biol. 10(12):1066–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267(3):727–748

    Article  CAS  PubMed  Google Scholar 

  12. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 245(1):43–53

    Article  CAS  PubMed  Google Scholar 

  13. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using gold. Proteins 52(4):609–623

    Article  CAS  PubMed  Google Scholar 

  14. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bianco G, Forli S, Goodsell DS, Olson AJ (2016) Covalent docking using autodock: Two-point attractor and flexible side chain methods. Protein Sci. 25(1):295–301

    Article  CAS  PubMed  Google Scholar 

  16. Zhu K, Borrelli KW, Greenwood JR, Day T, Abel R, Farid RS, Harder E (2014) Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. J. Chem. Inf. Model. 54(7):1932–1940

    Article  CAS  PubMed  Google Scholar 

  17. Toledo Warshaviak D, Golan G, Borrelli KW, Zhu K, Kalid O (2014) Structure-based virtual screening approach for discovery of covalently bound ligands. J. Chem. Inf. Model. 54(7):1941–1950

    Article  CAS  PubMed  Google Scholar 

  18. Corbeil CR, Englebienne P, Moitessier N (2007) Docking ligands into flexible and solvated macromolecules. 1. development and validation of fitted 1.0. J. Chem. Inf. Model. 47(2):435–449

    Article  CAS  PubMed  Google Scholar 

  19. Abagyan R, Totrov M, Kuznetsov D (1994) Icm–a new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15(5):488–506

    Article  CAS  Google Scholar 

  20. Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (moe): application of qsar and molecular docking to drug discovery. Curr. Topics Med. Chem. 8(18):1555–1572

    Article  CAS  Google Scholar 

  21. Scarpino A, Ferenczy GG, Keserű GM (2018) Comparative evaluation of covalent docking tools. J. Chem. Inf. Model. 58(7):1441–1458

    Article  CAS  PubMed  Google Scholar 

  22. Wu G, Robertson DH, Brooks Charles LIII, Vieth M (2003) Detailed analysis of grid-based molecular docking: A case study of cdocker - a charmm-based md docking algorithm. J. Comput. Chem. 24(13):1549–1562

    Article  CAS  PubMed  Google Scholar 

  23. Irwin JJ, Shoichet BK (2005) Zinc- a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45(1):177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) Zinc: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52(7):1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ouyang X, Zhou S, Su CTT, Ge Z, Li R, Kwoh CK (2013) Covalentdock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J. Comput. Chem. 34(4):326–336

    Article  CAS  PubMed  Google Scholar 

  26. Sterling T, Irwin JJ (2015) Zinc 15-ligand discovery for everyone. J. Chem. Inf. Model. 55(11):2324–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Bindingdb: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35(1):198–201

    Article  Google Scholar 

  28. Inc CCG (2016) Molecular operating environment (MOE). Chemical Computing Group Inc. 1010 Sherbooke St. West, Suite# 910, Montreal \(\ldots\)

  29. Landrum G (2013) RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Academic Press, USA

    Google Scholar 

  30. Riniker S, Landrum GA (2015) Better informed distance geometry: using what we know to improve conformation generation. J. Chem. Inf. Model. 55(12):2562–2574

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Witek J, Landrum GA, Riniker S (2020) Improving conformer generation for small rings and macrocycles based on distance geometry and experimental torsional-angle preferences. J. Chem. Inf. Model. 60(4):2044–2058

    Article  CAS  PubMed  Google Scholar 

  32. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the charmm general force field (cgenff) i: bond perception and atom typing. J. Chem. Inf. Model. 52(12):3144–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vanommeslaeghe K, Raman EP, MacKerell AD Jr (2012) Automation of the charmm general force field (cgenff) ii: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52(12):3155–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feig M, Karanicolas J, Brooks Charles LIII (2004) Mmtsb tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. J. Mol. Graph 22(5):377–395

    Article  CAS  Google Scholar 

  35. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I et al (2010) Charmm general force field: A force field for drug-like molecules compatible with the charmm all-atom additive biological force fields. J. Comput. Chem. 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brooks BR, Brooks Charles LIII, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) Charmm: the biomolecular simulation program. J. Comput. Chem. 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ding X, Wu Y, Wang Y, Vilseck JZ, Brooks Charles LIII (2020) Accelerated cdocker with gpus, parallel simulated annealing, and fast fourier transforms. J. Chem. Theory Comput. 16(6):3910–3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gagnon JK, Law SM, Brooks Charles LIII (2016) Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within charmm. J. Comput. Chem. 37(8):753–762

    Article  CAS  PubMed  Google Scholar 

  39. Wong T-T (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 48(9):2839–2846

    Article  Google Scholar 

  40. Luo YL (2021) Mechanism-based and computational-driven covalent drug design. J. Chem. Inf. Model. 61(11):5307–5311

    Article  CAS  PubMed  Google Scholar 

  41. Li A, Sun H, Du L, Wu X, Cao J, You Q, Li Y (2014) Discovery of novel covalent proteasome inhibitors through a combination of pharmacophore screening, covalent docking, and molecular dynamics simulations. J. Mol. Model. 20(11):1–13

    Article  Google Scholar 

  42. London N, Farelli JD, Brown SD, Liu C, Huang H, Korczynska M, Al-Obaidi NF, Babbitt PC, Almo SC, Allen KN et al (2015) Covalent docking predicts substrates for haloalkanoate dehalogenase superfamily phosphatases. Biochem. 54(2):528–537

    Article  CAS  Google Scholar 

  43. Haberthür U, Caflisch A (2008) Facts: Fast analytical continuum treatment of solvation. J. Comput. Chem. 29(5):701–715

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Grants from the NIH(GM130587, GM037554, and GM107233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Brooks III.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Brooks III, C.L. Covalent docking in CDOCKER. J Comput Aided Mol Des 36, 563–574 (2022). https://doi.org/10.1007/s10822-022-00472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-022-00472-3

Keywords

Navigation