Skip to main content

Advertisement

Log in

An epigenetic association of malformations, adverse reproductive outcomes, and fetal origins hypothesis related effects

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

A Correction to this article was published on 02 June 2018

This article has been updated

Abstract

VACTERL, the prototype for associated congenital anomalies, also has connections with functional issues such as pregnancy losses, prematurity, growth delays, perinatal difficulties, and parental subfertility. This segues into a broader association with similar connections even in the absence of malformations. DNA methylation disturbances in the ovum are a likely cause, with epigenetic links to individual components and to folate effects before conception, explaining diverse fetal and placental findings and providing a link to fetal origin hypothesis-related effects. The association encompasses the following: (1) Pre- and periconceptual effects, with frequent fertility issues and occasional imprinting disorders. (2) Early malformations. (3) Adverse pregnancy outcomes (APOs), as above. (4) Developmental destabilization that resolves soon after birth. This potentiates other causes of association findings, introducing multiple confounders. (5) Long-term fetal origins hypothesis-related risks. The other findings are exceptional when the same malformations have Mendelian origins, supporting a distinct pathogenesis. Expressions are facilitated by one-carbon metabolic issues, maternal and fetal stress, and decreased embryo size. This may be one of the commonest causes of adverse reproductive outcomes, but multifactorial findings, variable onsets and phenotypes, and interactions with multiple confounders make recognition difficult. This association supports VACTERL as a continuum that includes isolated malformations, extends the fetal origins hypothesis, explains adverse effects linked to maternal obesity, and suggests possible interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Change history

  • 02 June 2018

    The original version of this article unfortunately contained a mistake. The last 3 words of the article title were omitted. With this, the original article was corrected and the correct article title is now presented in here.

References

  1. Quan L, Smith DW. The VATER association: vertebral defects, anal atresia, tracheoesophageal fistula with esophageal atresia, radial dysplasia. Birth Defects Orig Art Ser. 1972;8(1):75–8.

    Google Scholar 

  2. Lubinsky M. The VACTERL association as a disturbance of cell fate determination. Am J Med Genet A. 2015;167(1):2582–8.

    Article  Google Scholar 

  3. Solomon BD. Vacterl/Vater association. Orphanet J Rare Dis. 2011;6(1):56. https://doi.org/10.1186/1750-1172-6-56.

  4. Lubinsky M. Embryonic hypocellularity, blastogenetic malformations, and fetal growth restriction. Am J Med Genet A. 2017;173(1):151–6.

    Article  PubMed  CAS  Google Scholar 

  5. Almond D, Currie J. Killing me softly: the fetal origins hypothesis. J Econ Perspect. 2011;25(3):153–72.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Heinonen K, Matilainen R, Koski H, Launiala K. Intrauterine growth retardation (IUGR) in pre-term infants. J Perinat Med. 1985;13(4):171–81.

    Article  PubMed  CAS  Google Scholar 

  7. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body and femur measurements—a prospective study. Am J Obstet Gynecol. 1985;151:333–7.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang J, Merialdi M, Platt LD, Kramer MS. Defining normal and abnormal fetal growth: promises and challenges. Am J Obstet Gynecol. 2010;202(6):522–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Doubilet PM, Benson CB, Wilkins-Haug L, Ringer S. Fetuses subsequently born premature are smaller than gestational age-matched fetuses not born premature. J Ultrasound Med. 2003;22(4):359–63.

    Article  PubMed  Google Scholar 

  10. Zeitlin J, Ancel PY, Saurel-Cubizolles MJ, Papiernik E. The relationship between intrauterine growth restriction and preterm delivery: an empirical approach using data from a European case-control study. Br J Obstet Gynecol. 2000;107(6):750–8.

    Article  CAS  Google Scholar 

  11. Gardosi JO. Prematurity and fetal growth restriction. Early Hum Dev. 2005;81(1):43–9.

    Article  PubMed  Google Scholar 

  12. Carreno CA, Costantine MM, Holland MG, Ramin SM, Saade GR, Blackwell SC. Approximately one-third of medically indicated late preterm births are complicated by fetal growth restriction. Am J Obstet Gynecol. 2011;204(3):263. e1-e4

    Article  PubMed  Google Scholar 

  13. Basso O, Wilcox AJ, Weinberg CR. Birth weight and mortality: causality or confounding? Am J Epidemiol. 2006;164(4):303–11.

    Article  PubMed  Google Scholar 

  14. Weinberg CR. Invited commentary: troubling trends in birth weight. Am J Epidemiol. 2015;183(1):24–5.

    Article  PubMed  Google Scholar 

  15. Kapurubandara S, Melov SJ, Shalou ER, Mukerji M, Yim S, Rao U, et al. A perinatal review of singleton stillbirths in an Australian metropolitan tertiary centre. PLoS One. 2017;12(2):e0171829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. Maternal and fetal risk factors for stillbirth: population based study. Br Med J. 2013;346(2):f108.

    Article  Google Scholar 

  17. Van Oppenraaij RH, Jauniaux E, Christiansen OB, Horcajadas JA, Farquharson RG, Exalto N. Predicting adverse obstetric outcome after early pregnancy events and complications: a review. Hum Reprod Update. 2009;15(4):409–21.

    Article  PubMed  Google Scholar 

  18. Fawzy M, Saravelos S, Li TC, Metwally M. Do women with recurrent miscarriage constitute a high-risk obstetric population? Hum Fertility. 2016;19(1):9–15.

    Article  Google Scholar 

  19. Wise LA, Mikkelsen EM, Sørensen HT, Rothman KJ, Hahn KA, Riis AH, et al. Prospective study of time to pregnancy and adverse birth outcomes. Fertil Sterility. 2015;103(4):1065–73.

    Article  Google Scholar 

  20. Messerlian C, Maclagan L, Basso O. Infertility and the risk of adverse pregnancy outcomes: a systematic review and meta-analysis. Hum Reprod. 2013;28(1):125–37.

    Article  PubMed  Google Scholar 

  21. Zhu JL, Basso O, Obel C, Bille C, Olsen J. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. Br Med J. 2006;333(7370):679–81.

    Article  Google Scholar 

  22. Draper ES, Kurinczuk JJ, Abrams KR, Clarke M. Assessment of separate contributions to perinatal mortality of infertility history and treatment: a case–control analysis. Lancet. 1999;353:1746–49.

  23. Thomson F, Shanbhag S, Templeton A, Bhattacharya S. Obstetric outcome in women with subfertility. Br J Obstet Gynecol. 2005;112(5):632–7.

    Article  Google Scholar 

  24. Seggers J, de Walle HE, Bergman JE, Groen H, Hadders-Algra M, Bos ME, et al. Congenital anomalies in offspring of subfertile couples: a registry-based study in the northern Netherlands. Fertil Steril. 2015;103(4):1001–10.

    Article  PubMed  Google Scholar 

  25. Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet. 2005;42(4):289–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Doornbos ME, Maas SM, McDonnell J, Vermeiden JP, Hennekam RC. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study. Hum Reprod. 2007;22(9):2476–80.

    Article  PubMed  Google Scholar 

  27. Liu Y, Tang Y, Ye D, Ma W, Feng S, Li X, et al. Impact of abnormal DNA methylation of imprinted loci on human spontaneous abortion. Reprod Sci. 2017;25(1):131–9. https://doi.org/10.1177/1933719117704906.

    Article  PubMed  CAS  Google Scholar 

  28. Kim JH, Scialli AR. Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol Sci. 2011;122(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  29. Opitz JM, Zanni G, Reynolds JF, Gilbert-Barness E. Defects of blastogenesis. Am J Med Genet A. 2002;115(4):269–86.

    Article  Google Scholar 

  30. Stoll C, Alembik Y, Dott B, Roth MP. Associated malformations in cases with oral clefts. Cleft Palate Craniofac J. 2000;37(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  31. Benirschke J, Kaufmann P. Anatomy and pathology of the umbilical cord and major fetal vessels. In: Benirschke J, Kaufmann P, editors. Pathology of the human placenta. NY: Springer; 2000. p. 355–98.

    Chapter  Google Scholar 

  32. Khoury MJ. James LM, Erickson JD. On the measurement and interpretation of birth defect associations in epidemiologic studies. Am J Med Genet 1990; 37:229–36.

  33. Mili F, Edmonds LD, Khoury MJ, McClearn AB. Prevalence of birth defects among low-birth-weight infants. A population study. Am J Dis Child. 1991;145:1313–8.

    Article  PubMed  CAS  Google Scholar 

  34. Rasmussen SA, Moore CA, Paulozzi LJ, Rhodenhiser EP. Risk for birth defects among premature infants: a population-based study. J Pediatr. 2001;138(5):668–73.

    Article  PubMed  CAS  Google Scholar 

  35. Czeizel A, Ludányi I. An aetiological study of the VACTERL-association. Eur J Pediatr. 1985;144(4):331–7.

    Article  PubMed  CAS  Google Scholar 

  36. Wijers CH, Rooij IA, Marcelis CL, Brunner HG, Blaauw I, Roeleveld N. Genetic and nongenetic etiology of nonsyndromic anorectal malformations: a systematic review. Birth Defects Res C: Embryo Today. 2014;102:382–400.

    Article  PubMed  CAS  Google Scholar 

  37. Tárnok A, Méhes K. Gastrointestinal malformations, associated congenital abnormalities, and intrauterine growth. J Pediatr Gastroenterol Nutr. 2002;34:406–9.

    Article  PubMed  Google Scholar 

  38. Malik S, Cleves MA, Zhao W, Correa A, Hobbs CA. Association between congenital heart defects and small for gestational age. Pediatr. 2007;119:e976–82.

    Article  Google Scholar 

  39. Wallenstein MB, Harper LM, Odibo AO, Roehl KA, Longman RE, Macones GA, et al. Fetal congenital heart disease and intrauterine growth restriction: a retrospective cohort study. J Matern Fetal Neonatal Med. 2012;25:662–5.

    Article  PubMed  Google Scholar 

  40. Depaepe A, Dolk H, Lechat MF. The epidemiology of tracheo-oesophageal fistula and oesophageal atresia in Europe. EUROCAT Working Group. Arch Dis Childh. 1993;68:743–8.

    Article  PubMed  CAS  Google Scholar 

  41. Czeizel AE, Vitéz M, Kodaj I, Lenz W. A family study on isolated congenital radial and tibial deficiencies in Hungary, 1975–1984. Clin Genet. 1993;44:32–6.

    Article  PubMed  CAS  Google Scholar 

  42. Evans JA, Vitez M, Czeizel A. Congenital abnormalities associated with limb deficiency defects: a population study based on cases from the Hungarian Congenital Malformation Registry (1975–1984). Am J Med Genet A. 1994;49A:52–66.

    Article  Google Scholar 

  43. Materna-Kiryluk A, Jamsheer A, Wisniewska K, Wieckowska B, Limon J, Borszewska-Kornacka M, et al. Epidemiology of isolated preaxial polydactyly type I: data from the Polish Registry of Congenital Malformations (PRCM). BMC Pediatr. 2013;13:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Honein MA, Kirby RS, Meyer RE, Xing J, Skerrette NI, Yuskiv N, et al. The association between major birth defects and preterm birth. Matern Child Health J. 2009;13:164–75.

    Article  PubMed  Google Scholar 

  45. Miquel-Verges F, Mosley BS, Block AS, Hobbs CA. A Spectrum project: preterm birth and small-for-gestational age among infants with birth defects. J Perinatol. 2015;35:198–203.

    Article  PubMed  CAS  Google Scholar 

  46. Egbe A, Uppu S, Lee S, Stroustrup A, Ho D, Srivastava S. Congenital malformations in the newborn population: a population study and analysis of the effect of sex and prematurity. Pediatr Neonatol. 2015;56:25–30.

    Article  PubMed  Google Scholar 

  47. Wijers CH, van Rooij IA, Rassouli R, Wijnen MH, Broens PM, Sloots CE, et al. Parental subfertility, fertility treatment, and the risk of congenital anorectal malformations. Epidemiology. 2015;26:169–76.

    Article  PubMed  Google Scholar 

  48. Källén B. Epidemiology of Human Congenital Malformations. Chapter 25. Limb reduction defects. Springer Verlag 2014: pp. 123–127.

  49. Laas E, Lelong N, Thieulin AC, Houyel L, Bonnet D, Ancel PY, et al. Preterm birth and congenital heart defects: a population-based study. Pediatr. 2012;130:e829–37.

    Article  Google Scholar 

  50. Dolan SM, Callaghan WM, Rasmussen SA. Birth defects and preterm birth: overlapping outcomes with a shared strategy for research and prevention. Birth Defects Res A. 2009;85:874–8.

    Article  CAS  Google Scholar 

  51. van den Berg MM, van Maarle MC, van Wely M, Goddijn M. Genetics of early miscarriage. Biochim Biophys Acta. 2012;1822:1951–9.

    Article  PubMed  CAS  Google Scholar 

  52. Byrne J, Warburton D, Kline J, Blanc W, Stein Z. Morphology of early fetal deaths and their chromosomal characteristics. Teratology. 1985;32:297–315.

    Article  PubMed  CAS  Google Scholar 

  53. Minelli E, Buchi C, Granata P, Meroni E, Righi R, Portentoso P, et al. Cytogenetic findings in echographically defined blighted ovum abortions. Ann Genet. 1993;36:107–10.

    PubMed  CAS  Google Scholar 

  54. Hardy K, Hardy PJ. 1st trimester miscarriage: four decades of study. Transl Pediatr. 2015;4:189–200.

    PubMed  PubMed Central  Google Scholar 

  55. Philipp T, Philipp K, Reiner A, Beer F, Kalousek DK. Embryoscopic and cytogenetic analysis of 233 missed abortions: factors involved in the pathogenesis of developmental defects of early failed pregnancies. Hum Reprod. 2003;18:1724–32.

    Article  PubMed  CAS  Google Scholar 

  56. Ogasawara M, Aoki K, Okada S, Suzumori K. Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil Steril. 2000;73:300–4.

    Article  PubMed  CAS  Google Scholar 

  57. Feichtinger M, Walner E, Hartman B, Reiner A, Phillip T. Transcervical embryoscopic and cytogenetic findings reveal distinctive differences in primary and secondary recurrent pregnancy loss. Fertil Steril. 2017;107:144–9.

    Article  PubMed  Google Scholar 

  58. Joó JG, Beke A, Berkes E, Papp Z, Rigó J Jr, Papp C. Fetal pathology in second-trimester miscarriages. Fetal Diagn Ther. 2009;25:186–91.

    Article  PubMed  Google Scholar 

  59. Khoury MJ, Erickson JD. Recurrent pregnancy loss as an indicator for increased risk of birth defects: a population-based case–control study. Paediatr Perinat Epidemiol. 1993;7:404–16.

    Article  PubMed  CAS  Google Scholar 

  60. Frey HA, Odibo AO, Dicke JM, Shanks AL, Macones GA, Cahill AG. Stillbirth risk among fetuses with ultrasound-detected isolated congenital anomalies. Obstet Gynecol. 2014;124:91–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Orioli IM, Amar E, Arteaga-Vazquez J, Bakker MK, Bianca S, Botto LD, et al. Sirenomelia: an epidemiologic study in a large dataset from the International Clearinghouse of Birth Defects Surveillance and Research, and literature review. Am J Med Genet C. 2011;157:358–73.

    Article  Google Scholar 

  62. Opitz JM. Blastogenesis and the “primary field” in human development. Birth Defects Orig Artic Ser. 1993;29(1):3–37.

    PubMed  CAS  Google Scholar 

  63. Martínez-Frías ML, Frias JL. Are blastogenetic anomalies sporadic? Am J Med Genet A. 1997;68:381–5.

    Article  Google Scholar 

  64. Linhart Y, Bashiri A, Maymon E, Shoham-Vardi I, Furman B, Vardi H, et al. Congenital anomalies are an independent risk factor for neonatal morbidity and perinatal mortality in preterm birth. Eur J Obstet Gynecol Reprod Bio. 2000;90:43–9.

    Article  CAS  Google Scholar 

  65. Mburia-Mwalili A, Yang W. Interpregnancy interval and birth defects. Birth Defects Res A. 2015;103:904–12.

    Article  CAS  Google Scholar 

  66. Hansen M, Kurinczuk JJ, Milne E, de Klerk N, Bower C. Assisted reproductive technology and birth defects: a systematic review and meta-analysis. Hum Reprod Update. 2013;19:330–53.

    Article  PubMed  Google Scholar 

  67. de Jong EM, Felix JF, Deurloo JA, van Dooren MF, Aronson DC, Torfs CP, et al. Non-VACTERL-type anomalies are frequent in patients with esophageal atresia/tracheo-esophageal fistula and full or partial VACTERL association. Birth Defects Res A. 2008;82:92–7.

    Article  CAS  Google Scholar 

  68. Carli D, Garagnani L, Lando M, Fairplay T, Bernasconi S, Landi A, et al. VACTERL (vertebral defects, anal atresia, tracheoesophageal fistula with esophageal atresia, cardiac defects, renal and limb anomalies) association: disease spectrum in 25 patients ascertained for their upper limb involvement. J Pediatr. 2014;164:458–62.

    Article  PubMed  Google Scholar 

  69. Torfs CP, Curry CJ, Bateson TF. Population-based study of tracheoesophageal fistula and esophageal atresia. Teratology. 1995;52:220–32.

    Article  PubMed  CAS  Google Scholar 

  70. Zwink N. Risk factors for congenital anorectal malformations. Medical dissertation abstract. Medizinische Fakultät Heidelberg. 2012; http://www.ub.uni-heidelberg.de/archiv/14882

  71. Martínez-Frías ML, Bermejo E, Rodríguez-Pinilla E, Prieto D. Does single umbilical artery (SUA) predict any type of congenital defect? Clinical–epidemiological analysis of a large consecutive series of malformed infants. Am J Med Genet A. 2007;146:15–25.

    Google Scholar 

  72. Araujo Júnior E, Palma-Dias R, Martins WP, Reidy K, da Silva Costa F. Congenital heart disease and adverse perinatal outcome in fetuses with confirmed isolated single functioning umbilical artery. J Obstet Gynaecol. 2015;35:85–7.

    Article  PubMed  Google Scholar 

  73. Kim HJ, Kim JH, Chay DB, Park JH, Kim MA. Association of isolated single umbilical artery with perinatal outcomes: systemic review and meta-analysis. Obstet Gynecol Sci. 2017;60:266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mailath-Pokorny M, Worda K, Schmid M, Polterauer S, Bettelheim D. Isolated single umbilical artery: evaluating the risk of adverse pregnancy outcome. Eur J Obstet Gynecol Reprod Biol. 2015;184:80–3.

    Article  PubMed  Google Scholar 

  75. Stout MJ, Odibo AO, Longman R, Shanks AL, Cahill AG. The incidence of isolated single umbilical artery in twins and adverse pregnancy outcomes. Prenat Diagn. 2013;33:269–72.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lilja M. Infants with single umbilical artery studied in a national registry. 2: survival and malformations in infants with single umbilical artery. Paediatr Perinat Epidemiol. 1992;6:416–22.

    Article  PubMed  CAS  Google Scholar 

  77. Prucka S, Clemens M, Craven C, McPherson E. Single umbilical artery: what does it mean for the fetus? A case-control analysis of pathologically ascertained cases. Genet Med. 2004;6:54–7.

    Article  PubMed  Google Scholar 

  78. Ashwal E, Melamed N, Hiersch L, Edel S, Bardin R, Wiznitzer A, et al. The impact of isolated single umbilical artery on labor and delivery outcome. Prenat Diagn. 2014;34:581–5.

    Article  PubMed  Google Scholar 

  79. Naveiro-Fuentes M, Carrillo-Badillo MP, Malde-Conde J, Gallo-Vallejo JL, Puertas-Prieto A. Perinatal outcomes in singleton pregnancies with a single umbilical artery. J Matern Fetal Neonatal Med. 2016;29:1562–5.

    Article  PubMed  Google Scholar 

  80. Burshtein S, Levy A, Holcberg G, Zlotnik A, Sheiner E. Is single umbilical artery an independent risk factor for perinatal mortality? Arch Gynecol Obstet. 2011;283:191–4.

    Article  PubMed  Google Scholar 

  81. Bianco K, Feldstein V, Norton M, Farrell JA, Keller R. OP04. 08: the prognostic significance of a single umbilical artery (SUA) in fetuses with prenatally detected congenital diaphragmatic hernia (CDH). Ultrasound Obstet Gynecol. 2011;38(S1):68.

    Article  Google Scholar 

  82. Voskamp BJ, Fleurke-Rozema H, Oude-Rengerink K, Snijders RJM, Bilardo CM, Mol BWJ, et al. Relationship of isolated single umbilical artery to fetal growth, aneuploidy and perinatal mortality: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2013;42:622–8.

    Article  PubMed  CAS  Google Scholar 

  83. Xu Y, Ren L, Zhai S, Luo X, Hong T, Liu R, et al. Association between isolated single umbilical artery and perinatal outcomes: a meta-analysis. Med Sci Monit. 2016;22:1451–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Heifetz SA. Single umbilical artery. A statistical analysis of 237 autopsy cases and review of the literature. Perspect Pediatr Pathol. 1984;8:345–78.

    PubMed  CAS  Google Scholar 

  85. Yiu TT, Li W. Pediatric cancer epigenome and the influence of folate. Epigenom. 2015;7:961–73.

    Article  CAS  Google Scholar 

  86. Mourad R, Cuvier O. Predicting the spatial organization of chromosomes using epigenetic data. Genome Biol. 2015;16:182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Navarro E, Funtikova AN, Fíto M, Schröder H. Prenatal nutrition and the risk of adult obesity: long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J Nutr Biochem. 2017;39:1–4.

    Article  PubMed  CAS  Google Scholar 

  88. Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr. 2002;132:2333S–5S.

    Article  PubMed  CAS  Google Scholar 

  89. Yang AS, Estécio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32:38e–38.

    Article  CAS  Google Scholar 

  90. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, et al. Factors underlying variable DNA methylation in a human community cohort. Proc Nat Acad Sci. 2012;109(Suppl 2):17253–60.

    Article  PubMed  Google Scholar 

  91. Mozhui K, Smith AK, Tylavsky FA. Ancestry dependent DNA methylation and influence of maternal nutrition. PLoS One. 2015;10(3):e0118466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014;5:3746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Teh AL, Pan H, Chen L, Ong ML, Dogra S, Wong J, et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res. 2014;24:1064–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, et al. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res. 2012;22:1395–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Ghosh J, Mainigi M, Coutifaris C, Sapienza C. Outlier DNA methylation levels as an indicator of environmental exposure and risk of undesirable birth outcome. Hum Mol Genet. 2016;25:123–9.

    Article  PubMed  CAS  Google Scholar 

  96. Macaulay EC, Bloomfield FH. Unravelling the link between the placental epigenome and pregnancy outcomes. Biol Reprod. 2016;94:81–2.

    Google Scholar 

  97. Serra-Juhé C, Cuscó I, Homs A, Flores R, Torán N, Pérez-Jurado LA. DNA methylation abnormalities in congenital heart disease. Epigenetics. 2015;10:167–77.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wijnands KP, Chen J, Liang L, Verbiest MM, Lin X, Helbing WA, et al. Genome-wide methylation analysis identifies novel CpG loci for perimembranous ventricular septal defects in human. Epigenomics. 2017;9:241–51.

    Article  PubMed  CAS  Google Scholar 

  99. Lei L, Lin H, Zhong S, Zhang Z, Chen J, Yu X, et al. DNA methyltransferase 1 rs16999593 genetic polymorphism decreases risk in patients with transposition of great arteries. Gene. 2017;615:50–6.

    Article  PubMed  CAS  Google Scholar 

  100. Nicolaou N, Renkema KY, Bongers EM, Giles RH, NVm K. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol. 2015;11:720–31.

    Article  PubMed  CAS  Google Scholar 

  101. Iacobazzi V, Infantino V, Castegna A, Andria G. Hyperhomocysteinemia: related genetic diseases and congenital defects, abnormal DNA methylation and newborn screening issues. Mol Genet Metab. 2014;113:27–33.

    Article  PubMed  CAS  Google Scholar 

  102. Yin LJ, Zhang Y, Lv PP, He WH, Wu YT, Liu AX, et al. Insufficient maintenance DNA methylation is associated with abnormal embryonic development. BMC Med. 2012;10:26. https://doi.org/10.1186/1741-7015-10-26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Bhavnani SK, Dang B, Kilaru V, Caro M, Visweswaran S, Saade G, Smith AK, Menon R. Methylation differences reveal heterogeneity in preterm pathophysiology: results from bipartite network analyses. J Perinat Med 2017;0. doi: https://doi.org/10.1515/jpm-2017-0126

  104. Burris HH, Baccarelli AA, Motta V, Byun HM, Just AC, Mercado-Garcia A, et al. Association between length of gestation and cervical DNA methylation of PTGER2 and LINE 1-HS. Epigenetics. 2014;9:1083–91.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Burris HH, Rifas-Shiman SL, Baccarelli A, Tarantini L, Boeke CE, Kleinman K, et al. Associations of long interspersed nuclear element-1 DNA methylation with preterm birth in a prospective cohort study. J Develop Orig Health Dis. 2012;3:173–81.

    Article  CAS  Google Scholar 

  106. Chen X, Bai G, Scholl TO. Spontaneous preterm delivery, dietary choline intake and DNA hypomethylation of tumor related genes in pregnant women. FASEB J. 2016;30(Suppl 1):912.2.

    Google Scholar 

  107. Díaz M, García C, Sebastiani G, de Zegher F, López-Bermejo A, Ibáñez L. Placental and cord blood methylation of genes involved in energy homeostasis: association with fetal growth and neonatal body composition. Diabetes. 2017;66:779–84.

    Article  PubMed  CAS  Google Scholar 

  108. Gu H, Gao J, Guo W, Zhou Y, Kong Q. The expression of DNA methyltransferases3A is specifically downregulated in chorionic villi of early embryo growth arrest cases. Mol Med Rep. 2017;16:591–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Liu Y, Zheng H, Guo P, Feng S, Zhou X, Ye D, et al. DNA methyltransferase 3A promoter polymorphism is associated with the risk of human spontaneous abortion after assisted reproduction techniques and natural conception. J Assist Reprod Genet. 2017;34:245–52.

    Article  PubMed  Google Scholar 

  110. Dhawan S, Tschen SI, Zeng C, Guo T, Hebrok M, Matveyenko A, et al. DNA methylation directs functional maturation of pancreatic β cells. J Clin Invest. 2015;125:2851–60.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Iglesias-Platas I, Martin-Trujillo A, Petazzi P, Guillaumet-Adkins A, Esteller M, Monk D. Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta. Hum Mol Genet. 2014;23:6275–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. DeBaun MR, King AA, White N. Hypoglycemia in Beckwith-Wiedemann syndrome. Semin Perinatol. 2000;24:164–71.

    Article  PubMed  CAS  Google Scholar 

  113. Docherty LE, Kabwama S, Lehmann A, Hawke E, Harrison L, Flanagan SE, et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype–phenotype correlation in an international cohort of patients. Diabetologia. 2013;56:758–62.

    Article  PubMed  CAS  Google Scholar 

  114. Meredith M, MacNeil AH, Trasler JM, Baltz JM. Growing mouse oocytes transiently activate folate transport via folate receptors as they approach full size. Biol Reprod. 2016; biolreprod-115. doi: https://doi.org/10.1095/biolreprod.115.137687.

  115. Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair KD. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update. 2013;19:640–55.

    Article  PubMed  CAS  Google Scholar 

  116. Silvestris E, Cohen M, Menezo Y. Oxidative stress (OS) and DNA methylation errors in reproduction a place for a support of the one carbon cycle (1-C Cycle) before conception. Womens Health Gynecol. 2016; 2(4).

  117. Twigt JM, Bezstarosti K, Demmers J, Lindemans J, Laven JS, Steegers-Theunissen RP. Preconception folic acid use influences the follicle fluid proteome. Eur J Clin Investig. 2015;45:833–41.

    Article  CAS  Google Scholar 

  118. Laanpere M, Altmäe S, Stavreus-Evers A, Nilsson TK, Yngve A, Salumets A. Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr Rev. 2010;68:99–113.

    Article  PubMed  Google Scholar 

  119. Gaskins AJ, Rich-Edwards JW, Hauser R, Williams PL, Gillman MW, Ginsburg ES, et al. Maternal prepregnancy folate intake and risk of spontaneous abortion and stillbirth. Obstet Gynecol. 2014;124:23–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Hodgetts VA, Morris RK, Francis A, Gardosi J, Ismail KM. Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: a population study, systematic review, and meta-analysis. Br J Obstet Gynecol. 2015;122:478–90.

    Article  CAS  Google Scholar 

  121. Zheng JS, Guan Y, Zhao Y, Zhao W, Tang X, Chen H, et al. Pre-conceptional intake of folic acid supplements is inversely associated with risk of preterm birth and small-for-gestational-age birth: a prospective cohort study. Br J Nutr. 2016;115:509–16.

    Article  PubMed  CAS  Google Scholar 

  122. De-Regil LM, Fernández-Gaxiola AC, Dowswell T, Peña-Rosas JP. Effects and safety of periconceptional folate supplementation for preventing birth defects. Cochrane Libr 2010.

  123. Cueto HT, Riis AH, Hatch EE, Wise LA, Rothman KJ, Sørensen HT, et al. Folic acid supplementation and fecundability: a Danish prospective cohort study. Eur J Clin Nutr. 2016;70:66–71.

    Article  PubMed  CAS  Google Scholar 

  124. Parisi F, Rousian M, Koning AH, Willemsen SP, Cetin I, Steegers EA, et al. Periconceptional maternal biomarkers of one-carbon metabolism and embryonic growth trajectories: the Rotterdam Periconceptional Cohort (Predict Study). Fertil Steril. 2017;107:691–698.e1.

    Article  PubMed  CAS  Google Scholar 

  125. Parisi F, Rousian M, Koning AH, Willemsen SP, Cetin I, Steegers-Theunissen RP. Periconceptional maternal one-carbon biomarkers are associated with embryonic development according to the Carnegie stages. Hum Reprod 2017; doi: https://doi.org/10.1093/humrep/dew349.

  126. Wildenschild C, Riis AH, Ehrenstein V, Hatch EE, Wise LA, Rothman KJ, et al. A prospective cohort study of a woman’s own gestational age and her fecundability. Hum Reprod. 2015;30:947–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Surén P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. J Am Med Assn. 2013;309:570–7.

    Article  Google Scholar 

  128. Erdei C, Dammann O. The perfect storm: preterm birth, neurodevelopmental mechanisms, and autism causation. Perspect Biol Med. 2014;57:470–81.

    Article  PubMed  Google Scholar 

  129. Ménézo Y, Mares P, Cohen M, Brack M, Viville S, Autism EK. Imprinting and epigenetic disorders: a metabolic syndrome linked to anomalies in homocysteine recycling starting in early life? J Assist Reprod Genet. 2011;28:1143–5.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Abu-Saad K, Fraser D. Maternal nutrition and birth outcomes. Epidemiol Rev. 2010;32:5–25.

    Article  PubMed  Google Scholar 

  131. Bjørke-Monsen AL, Ulvik A, Nilsen RM, Midttun Ø, Roth C, Magnus P, et al. Impact of pre-pregnancy BMI on B vitamin and inflammatory status in early pregnancy: an observational cohort study. Nutrients. 2016;8:776.

    Article  PubMed Central  CAS  Google Scholar 

  132. Radulescu L, Munteanu O, Popa F, Cirstoiu M. The implications and consequences of maternal obesity on fetal intrauterine growth restriction. J Med Life. 2013;6:292–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Stothard KJ, Tennant PW, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. J Am Med Assn. 2009;301:636–50.

    Article  CAS  Google Scholar 

  134. Zwink N, Jenetzky E, Brenner H. Parental risk factors and anorectal malformations: systematic review and meta-analysis. Orphanet J Rare Dis. 2011;6:25.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Macumber I, Schwartz S, Leca N. Maternal obesity is associated with congenital anomalies of the kidney and urinary tract in offspring. Pediatr Nephrol. 2016;17:1–8.

    Google Scholar 

  136. Khairy M, Rajkhowa M. Effect of obesity on assisted reproductive treatment outcomes and its management: a literature review. Obstet Gynaecol. 2017;19:47–54.

    Google Scholar 

  137. Poston L, Caleyachetty R, Cnattingius S, Corvalán C, Uauy R, Herring S, et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016;4:1025–36.

    Article  PubMed  Google Scholar 

  138. Mulder EJ, De Medina PR, Huizink AC, Van den Bergh BR, Buitelaar JK, Visser GH. Prenatal maternal stress: effects on pregnancy and the (unborn) child. Early Hum Dev. 2002;70:3–14.

    Article  PubMed  CAS  Google Scholar 

  139. Rivkees SA, Wendler CC. Long-term consequences of disrupting adenosine signaling during embryonic development. Mol Aspects Med. 2017;55:110–7. https://doi.org/10.1016/j.mam.2017.02.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Cao-Lei L, De Rooij SR, King S, Matthews SG, Metz GA, Roseboom TJ, et al. Prenatal stress and epigenetics. Neurosci Biobehav Rev. 2017;7634(16):30726–6. https://doi.org/10.1016/jneubiorev201705.016.

  141. Hedman ÅK, Mendelson MM, Marioni RE, Gustafsson S, Joehanes R, Irvin MR, Zhi D, Sandling JK, Yao C, Liu C, Liang L. Epigenetic patterns in blood associated with lipid traits predict incident coronary heart disease events and are enriched for results from genome-wide association studies. Circ Cardiovasc Genet. 2017; 10(1). pii: e001487. doi: https://doi.org/10.1161/CIRCGENETICS.116.001487.

  142. Volkov P, Bacos K, Ofori JK, Esguerra JL, Eliasson L, Rönn T, et al. Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes. 2017;66:1074–85.

    Article  PubMed  CAS  Google Scholar 

  143. Joubert BR, Herman T, Felix JF, Bohlin J, Ligthart S, Beckett E, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016;7:10577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Stein Z, Susser M. Fertility, Fecundity, famine: food rations in the Dutch famine 1944/5 have a causal relation to fertility, and probably to fecundity. Hum Biol. 1975;47:131–54.

    PubMed  CAS  Google Scholar 

  145. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014;5:5592. https://doi.org/10.1038/ncomms6592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Moore SE. Early life nutritional programming of health and disease in the Gambia. J Dev Orig Health Dis. 2016;7:123–31.

    Article  PubMed  CAS  Google Scholar 

  147. Gielen M, Lindsey PJ, Derom C, Loos RJ, Souren NY, Paulussen AD, et al. Twin-specific intrauterine “growth” charts based on cross-sectional birthweight data. Twin Res Hum Genet. 2008;11:224–35.

    Article  PubMed  Google Scholar 

  148. Breathnach FM, Malone FD. Fetal growth disorders in twin gestations. Sem Perinatol. 2012;36(3):75–181.

    Article  Google Scholar 

  149. Ancel PY, Goffinet F, Kuhn P, Langer B, Matis J, Hernandorena X, et al. Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr. 2015;169:230–8.

    Article  PubMed  Google Scholar 

  150. Ellison PT. Evolutionary perspectives on the fetal origins hypothesis. Am J Hum Biol. 2005;17:113–8.

    Article  PubMed  Google Scholar 

  151. Khoury MJ, Erickson JD, Cordero JF, McCarthy BJ. Congenital malformations and intrauterine growth retardation: a population study. Pediatr. 1988;82:83–90.

    CAS  Google Scholar 

  152. Calzolari E, Barisic I, Loane M, Morris J, Wellesley D, Dolk H, et al. Epidemiology of multiple congenital anomalies in Europe: a EUROCAT population-based registry study. Birth Defects Res A. 2014;100:270–6.

    Article  CAS  Google Scholar 

  153. Pharoah PO, Glinianaia SV, Rankin J. Congenital anomalies in multiple births after early loss of a conceptus. Hum Reprod. 2008;24:726–31.

    Article  PubMed  PubMed Central  Google Scholar 

  154. D’Antonio F, Khalil A, Dias T, Thilaganathan B. the Southwest Thames Obstetric Research Collaborative (STORK). Weight discordance and perinatal mortality in twins: analysis of the Southwest Thames Obstetric Research Collaborative (STORK) multiple pregnancy cohort. Ultrasound Obstet Gynecol. 2013;41:643–8.

    Article  PubMed  Google Scholar 

  155. Cheong JN, Wlodek ME, Moritz KM, Cuffe JS. Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations. J Physiol. 2016;594:4727–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Tanz LJ, Stuart JJ, Williams PL, Rimm EB, Missmer SA, Rexrode KM, et al. Preterm delivery and maternal cardiovascular disease in young and middle-aged adult women. Circulation. 2017;135:578–89.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ly L, Chan D, Aarabi M, Landry M, Behan NA, MacFarlane AJ, et al. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation. Mol Hum Reprod. 2017;23:461–77.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab. 2017;25:559–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Serpeloni F, Radtke K, De Assis SG, Henning F, Nätt D, Elbert T. Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study. Transl Psychiatry. 2017;7(8):e1202. https://doi.org/10.1038/tp.2017.153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Huntriss J, Woodfine K, Huddleston JE, Murrell A, Picton HM. Analysis of DNA methylation patterns in single blastocysts by pyrosequencing®. Methods Mol Biol. 2015;1315:259–70.

    Article  PubMed  Google Scholar 

  161. Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Global DNA methylation levels are altered by modifiable clinical manipulations in assisted reproductive technologies. Clin Epigenetics. 2017;9:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Lubinsky.

Additional information

The original version of this article was revised: a modification has been made to the article title.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubinsky, M. An epigenetic association of malformations, adverse reproductive outcomes, and fetal origins hypothesis related effects. J Assist Reprod Genet 35, 953–964 (2018). https://doi.org/10.1007/s10815-018-1197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1197-2

Keywords

Navigation