Skip to main content

Advertisement

Log in

Genetically Modifying Livestock for Improved Welfare: A Path Forward

  • Articles
  • Published:
Journal of Agricultural and Environmental Ethics Aims and scope Submit manuscript

Abstract

In recent years, humans’ ability to selectively modify genes has increased dramatically as a result of the development of new, more efficient, and easier genetic modification technology. In this paper, we argue in favor of using this technology to improve the welfare of agricultural animals. We first argue that using animals genetically modified for improved welfare is preferable to the current status quo. Nevertheless, the strongest argument against pursuing gene editing for welfare is that there are alternative approaches to addressing some of the challenges of modern agriculture that may offer ethical advantages over genetic modification; namely, a dramatic shift towards plant-based diets or the development of in vitro meat. Nevertheless, we provide reasons for thinking that despite these possible comparative disadvantages there are important reasons for continuing the pursuit of welfare improvements via genetic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There are, however, some interesting questions that could arise in relation to companies patenting gene edits and how this would affect consumers and farmers. For more on this, see Gifford (2010).

  2. Thanks to two reviewers for this point.

  3. We thank Dan Weary for this example.

  4. In fact, we have preliminary data that bolsters our case. In a survey using Amazon’s Mechanical Turk, we found that a majority of participants accepted the use of genetic modification to create hornless cows. In another set of questions, we found that describing modifications as being done for the purpose of improving welfare appeared to influence participants’ responses towards being more favorable.

  5. We are classifying Ortiz’s argument in a manner that is different than Thompson’s original article. Thompson situated his argument in the first category, but we include it here because Ortiz repeatedly references the idea that the changes will interfere with what is for an animal’s “own good” (2004, p. 115) even if they do not diminish welfare.

  6. As one of our reviewers notes, integrity might function in a different way, serving as a “tiebreaker” in cases of comparable welfare but never overriding considerations of welfare. This is an interesting idea, but Bovenkerk et al. and Ortiz both suggest that welfare can sometimes be overruled by considerations of integrity or dignity, respectively. Moreover, since we are specifically considering cases where, by hypothesis, the welfare of animals is improved in virtue of the modification, this suggestion doesn’t cause any problems for our arguments.

  7. Of course, there are features of the biological world that can be morally problematic, but the point here is that species seem to be valued precisely because they represent some natural feature of the world; mutations and divergences from the central tendency seem to have just as much claim to representing a natural feature of the world as do species.

  8. Another suggestion is that we could simply choose to move away from current intensive confinement conditions and back towards models where livestock are able to graze freely for most of their lives. While this could work in particular contexts and on a smaller scale, it does not seem to be a plausible option if the global population continues to grow as expected and meat consumption trends continue. As such, this could be considered part of a solution, but most likely would need to be combined with a general shift toward plant-based diets or some other type of solution. And, by itself, this would not seem to address the fact that even organic and small scale farming operations raise challenges for the environment and land-use decisions.

  9. Some take this claim further and suggest that improving animal welfare will actually impede the ultimate social change needed to reach a morally tolerable state by putting a band-aid over the problem and appeasing public concerns. These claims are always highly speculative, and one might alternatively claim that getting the public to think more about welfare will in fact lead to even further changes down the road. It’s difficult to know how to evaluate such speculative claims and as such it seems highly dubious to ever use them to block concrete improvements in welfare.

  10. It is worth noting, as one of our reviewers pointed out, that Rollin’s Principle of Conservation of Welfare is more restrictive than current policies and practices related to selective breeding. Hopefully, the moral controversy surrounding genetic modification can help ensure that new practices are held to higher standards.

References

  • Albrecht, G. L., & Devlieger, P. J. (1999). The disability paradox: High quality of life against all odds. Social Science and Medicine, 48(8), 977–988.

    Article  Google Scholar 

  • Ali, A., & Cheng, K. M. (1985). Early egg production in genetically blind (rc/rc) chickens in comparison with sighted (Rc+/rc) controls. Poultry Science, 64(5), 789–794.

    Article  Google Scholar 

  • AVMA. (2010). Welfare implications of beak trimming. Accessed online at https://www.avma.org/KB/Resources/LiteratureReviews/Pages/beak-trimming-bgnd.aspx.

  • Barnes, E. (2016). The minority body: A theory of disability. New York: Oxford University Press.

    Book  Google Scholar 

  • Bhullar, B. S., Morris, Z. S., Sefton, E. M., Tok, A., Tokita, M., Namkoong, B., et al. (2015). A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution, 69(7), 1665–1677. https://doi.org/10.1111/evo.12684.

    Article  Google Scholar 

  • Bovenkerk, B., Brom, F. W. A., & van den Bergh, B. J. (2001). Brave new birds: The use of integrity in animal ethics. Hastings Center Report, 32(1), 16–22. https://doi.org/10.2307/3528292.

    Article  Google Scholar 

  • Burkard, C., Lillico, S. G., Reid, E., Jackson, B., Mileham, A. J., Ait-Ali, T., et al. (2017). Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens, 13(2), e1006206. https://doi.org/10.1371/journal.ppat.1006206.

    Article  Google Scholar 

  • Campbell, S. M., & Stramondo, J. A. (2017). The complicated relationship of disability and well-being. Kennedy Institute of Ethics Journal, 27(2), 151–184.

    Article  Google Scholar 

  • Carlson, D. F., Fahrenkrug, S. C., & Lauth, X. (2014). U.S. Patent No. US20140123330 A1. Washington: Patent and Trademark Office.

    Google Scholar 

  • Carlson, D. F., Lancto, C. A., Kim, E., Walton, M., Sonstegard, T. S., Fahrenkrug, S. C., et al. (2016). Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 34(5), 479–481. https://doi.org/10.1038/nbt.3560.

    Article  Google Scholar 

  • Clifford, S., & Wendell, D. G. (2016). How disgust influences health purity attitudes. Political Behavior, 38(1), 155–178.

    Article  Google Scholar 

  • Collins, S., Forkman, B., Kristensen, H. H., Sandøe, P., & Hocking, P. M. (2011). Investigating the importance of vision in poultry: Comparing the behaviour of blind and sighted chickens. Applied Animal Behaviour Science, 133(1), 60–69.

    Article  Google Scholar 

  • Comstock, G. (1992). What obligations have scientists to transgenic animals? Discussion paper by the Center for Biotechnology, Policy and Ethics. College Station, TX: Texas A&M University.

  • Comstock, G. (2000). Vexing nature? On the ethical case against agricultural biotechnology. Norwell, MA: Kluwer Academic Publishers.

    Google Scholar 

  • Cui, C., Song, Y., Liu, J., Ge, H., Li, Q., Huang, H., et al. (2015). Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Scientific Reports, 5(1), 10482. https://doi.org/10.1038/srep10482.

    Article  Google Scholar 

  • Datar, I., & Betti, M. (2010). Possibilities for an in vitro meat production system. Innovative Food Science and Emerging Technologies, 11(1), 13–22.

    Article  Google Scholar 

  • Diener, E., & Diener, C. (1996). Most people are happy. Psychological Science, 7(3), 181–185.

    Article  Google Scholar 

  • Esvelt, K. (2016). Engineering improved animal well-being for medical research. Presentation at The Animal Welfare Act at Fifty Conference, Boston.

  • Faulkner, P. M., & Weary, D. M. (2000). Reducing pain after dehorning in dairy calves. Journal of Dairy Science, 83, 2037–2041. https://doi.org/10.3168/jds.S0022-0302(00)75084-3.

    Article  Google Scholar 

  • Fraser, D., Mench, J., & Millman, S. (2000). Farm animals and their welfare in 2000. In D. J. Salem & A. N. Rowan (Eds.), The state of the animals 2001 (pp. 87–99). Washington: Humane Society Press.

    Google Scholar 

  • Fulwider, W. K., Grandin, T., Rollin, B. E., Engle, T. E., Dalsted, N. L., & Lamm, W. D. (2008). Survey of dairy management practices on one hundred thirteen north central and northeastern United States dairies. Journal of Dairy Science, 91, 1686–1692. https://doi.org/10.3168/jds.2007-0631.

    Article  Google Scholar 

  • Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Cui, C., et al. (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 18(1), 13. https://doi.org/10.1186/s13059-016-1144-4.

    Article  Google Scholar 

  • Gifford, F. (2010). Biotechnology. In G. Comstock (Ed.), Life science ethics (2nd ed., pp. 189–220). New York: Springer.

    Chapter  Google Scholar 

  • Golovan, S. P., Meidinger, R. G., Ajakaiye, A., Cottrill, M., Wiederkehr, M. Z., Barney, D. J., et al. (2001). Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnology, 19(8), 741–745. https://doi.org/10.1038/90788.

    Article  Google Scholar 

  • Haidt, J., Koller, S. H., & Dias, M. G. (1993). Affect, culture, and morality, or is it wrong to eat your dog? Journal of Personality and Social Psychology, 65(4), 613–628. https://doi.org/10.1037/0022-3514.65.4.613.

    Article  Google Scholar 

  • Hallman, W. K., Hebden, W. C., Cuite, C. L., Aquino, H. L., & Lang, J. T. (2004). Americans and GM food: Knowledge, opinion, and interest in 2004. New Brunswick, NJ: Food Policy Institute, Cook College, Rutgers – The State University of New Jersey (Publication No. RR-1104-007).

    Google Scholar 

  • Hossain, F., & Onyango, B. (2004). Product attributes and consumer acceptance of nutritionally enhanced genetically modified foods. International Journal of Consumer Studies, 28(3), 255–267.

    Article  Google Scholar 

  • Jabed, A., Wagner, S., McCracken, J., Wells, D. N., & Laible, G. (2012). Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk. Proceedings of the National Academy of Sciences of the United States of America, 109(42), 16811–16816. https://doi.org/10.1073/pnas.1210057109.

    Article  Google Scholar 

  • Jongbloed, A. W., & Lenis, N. P. (1998). Environmental concerns about animal manure. Journal of Animal Science, 76(10), 2641–2648.

    Article  Google Scholar 

  • Lai, L., Kang, J. X., Li, R., Wang, J., Witt, W. T., Yong, H. Y., et al. (2006). Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 24(4), 435–436. https://doi.org/10.1038/nbt1198.

    Article  Google Scholar 

  • Liu, X., Wang, Y., Tian, Y., Yu, Y., Gao, M., Hu, G., et al. (2014). Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proceedings of the Royal Society B: Biological Sciences, 281(1780), 20133368–20133368.

    Article  Google Scholar 

  • Lyall, J., Irvine, R. M., Sherman, A., McKinley, T. J., Núñez, A., Purdie, A., et al. (2011). Suppression of avian influenza transmission in genetically modified chickens. Science, 331, 223–226. https://doi.org/10.1126/science.1198020.

    Article  Google Scholar 

  • Macnaghten, P. (2004). Animals in their nature. Sociology, 38(3), 533–551.

    Article  Google Scholar 

  • McMichael, A. J., Powles, J. W., Butler, C. D., & Uauy, R. (2007). Food, livestock production, energy, climate change, and health. The Lancet, 370(9594), 1253–1263.

    Article  Google Scholar 

  • Minett, M. S., Pereira, V., Sikandar, S., Matsuyama, A., Lolignier, S., Kanellopoulos, A. H., et al. (2015). Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nature. Communications, 6, 8967.

    Google Scholar 

  • Neilsen Company. (2016). Consumer report: Americans are nuts for almond milk. http://www.nielsen.com/us/en/insights/news/2016/americans-are-nuts-for-almond-milk.html. Accessed 25 October 2017.

  • Ortiz, S. (2004). Beyond welfare: Animal integrity, animal dignity and genetic engineering. Ethics & the Environment, 9(1), 94–120. https://doi.org/10.2979/ETE.2004.9.1.94.

    Article  Google Scholar 

  • Puppe, B., Schon, P. C., Tuchscherer, A., & Manteuffel, G. (2005). Castration-induced vocalisation in domestic piglets, Sus scrofa: Complex and specific alterations of the vocal quality. Applied Animal Behaviour Science, 95, 67–78.

    Article  Google Scholar 

  • Railton, P. (1986). Facts and values. Philosophical Topics, 14(2), 5–31.

    Article  Google Scholar 

  • Regan, T. (1983). The case for animal rights. Berkeley: University of California Press.

    Google Scholar 

  • Rollin, B. (1995). The Frankenstein syndrome: Ethical and social issues in the genetic engineering of animals. New York: Cambridge University Press.

    Book  Google Scholar 

  • Rollin, B. (1998). On telos and genetic engineering. In A. Holland & A. Johnson (Eds.), Animal biotechnology and ethics (pp. 156–187). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Rozin, P. (1990). Social and moral aspects of food and eating. In I. Rock (Ed.), The legacy of Solomon Asch: Essays in cognition and social psychology (pp. 97–110). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Saeki, K., Matsumoto, K., Kinoshita, M., Suzuki, I., Tasaka, Y., Kano, K., et al. (2004). Functional expression of a Δ12 fatty acid desaturase gene from Spinach in transgenic pigs. Proceedings of the National Academy of Science USA, 101, 6361–6366. https://doi.org/10.1073/pnas.0308111101.

    Article  Google Scholar 

  • Sandøe, P. B., Nielsen, L., Christensen, L. G., & Sørensen, P. (1999). Staying good while playing God—the ethics of breeding farm animals. Animal Welfare, 8(4), 313–328.

    Google Scholar 

  • Schnall, S., Haidt, J., Clore, G. L., & Jordan, A. H. (2008). Disgust as embodied moral judgment. Personality and Social Psychology Bulletin, 34(8), 1096–1109.

    Article  Google Scholar 

  • Shriver, A. (2009). Knocking out pain in livestock: Can technology succeed where morality has stalled? Neuroethics, 2(3), 115–124.

    Article  Google Scholar 

  • Simopoulos, A. P. (1999). Essential fatty acids in health and chronic disease. Food Reviews International, 70(3), 623–631.

    Google Scholar 

  • Smolenski, G., Wheeler, T., L’Huillier, P., Laible, G., Wells, D., & Brophy, B. (2003). Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nature Biotechnology, 21(2), 157–162. https://doi.org/10.1038/nbt783.

    Article  Google Scholar 

  • Tan, W., Carlson, D., & Fahrenkrug, S. (2013). TALEN enabled efficient precision genome editing in pigs and cattle. Transgenic Research, 22(1), 237–238.

    Google Scholar 

  • Taylor, A. A., Weary, D. M., Lessard, M., & Braithwaite, L. (2001). Behavioural responses of piglets to castration: the effect of piglet age. Applied Animal Behavior Science, 73, 35–43.

    Article  Google Scholar 

  • Thompson, P. B. (2008). The opposite of human enhancement: nanotechnology and the blind chicken problem. Nanoethics, 2(3), 305–316.

    Article  Google Scholar 

  • van Liere, D. W. (1995). Responsiveness to a novel preening stimulus long after partial beak amputation (beak trimming) in laying hens. Behavioral Processes, 34, 169–174.

    Article  Google Scholar 

  • Varner, G. (2012). Personhood, ethics, and animal cognition. New York: Oxford University Press.

    Book  Google Scholar 

  • Wall, R. J., Powell, A. M., Paape, M. J., Kerr, D. E., Bannerman, D. D., Pursel, V. G., et al. (2005). Corrigendum: Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 23(7), 897–897.

    Article  Google Scholar 

  • Wheatley, T., & Haidt, J. (2005). Hypnotic disgust makes moral judgments more severe. Psychological Science, 16(10), 780–784.

    Article  Google Scholar 

  • WSU—Washington State University Grand Challenges Project Website. (2016). Accessed at https://provost.wsu.edu/grand-challenge-projects/. Accessed 16 December 2017.

  • Wu, H., Wang, Y., Zhang, Y., Yang, M., Lv, J., Liu, J., et al. (2015). TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences, 112(13), pE1530–pE1539.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank David Fraser, Marina von Keyserlingk, Clare Palmer, Marcus Schultz-Bergin, Gary Varner, Dan Weary, Heather Yong, two anonymous reviewers, and the audience at the Bovay Workshop on Engineering and Applied Ethics at Texas A&M University for helpful comments on versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Shriver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shriver, A., McConnachie, E. Genetically Modifying Livestock for Improved Welfare: A Path Forward. J Agric Environ Ethics 31, 161–180 (2018). https://doi.org/10.1007/s10806-018-9719-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10806-018-9719-6

Keywords

Navigation