Skip to main content
Log in

Light-Adapted Electroretinogram Differences in Autism Spectrum Disorder

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Light-adapted (LA) electroretinograms (ERGs) from 90 individuals with autism spectrum disorder (ASD), mean age (13.0 ± 4.2), were compared to 87 control subjects, mean age (13.8 ± 4.8). LA-ERGs were produced by a random series of nine different Troland based, full-field flash strengths and the ISCEV standard flash at 2/s on a 30 cd m−2 white background. A random effects mixed model analysis showed the ASD group had smaller b- and a-wave amplitudes at high flash strengths (p < .001) and slower b-wave peak times (p < .001). Photopic hill models showed the peaks of the component Gaussian (p = .035) and logistic functions (p = .014) differed significantly between groups. Retinal neurophysiology assessed by LA-ERG provides insight into neural development in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al Abdlseaed, A., McTaggart, Y., Ramage, T., Hamilton, R., & McCulloch, D. L. (2010). Light- and dark-adapted electroretinograms (ERGs) and ocular pigmentation: Comparison of brown- and blue-eyed cohorts. Documenta Ophthalmologica,121(2), 135–146.

    PubMed  Google Scholar 

  • An, J. Y., Lin, K., Zhu, L., Werling, D. M., Dong, S., Brand, H., et al. (2018). Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science. https://doi.org/10.1126/science.aat6576.

    Article  PubMed  PubMed Central  Google Scholar 

  • APA. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.

    Google Scholar 

  • Autism Genome Project. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics,39(3), 319–328.

    Google Scholar 

  • Baird, G., Simonoff, E., Pickles, A., Chandler, S., Loucas, T., Meldrum, D., et al. (2006). Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: The Special Needs and Autism Project (SNAP). The Lancet,368(9531), 210–215.

    Google Scholar 

  • Baribeau, D. A., Dupuis, A., Paton, T. A., Hammill, C., Scherer, S. W., Schachar, R. J., et al. (2019). Structural neuroimaging correlates of social deficits are similar in autism spectrum disorder and attention-deficit/hyperactivity disorder: Analysis from the POND Network. Translational Psychiatry,9(1), 72. https://doi.org/10.1038/s41398-019-0382-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertrand, J., Mars, A., Boyle, C., Bove, F., Yeargin-Allsopp, M., & Decoufle, P. (2001). Prevalence of autism in a United States population: The Brick Township, New Jersey, Investigation. Pediatrics,108(5), 1155–1161.

    PubMed  Google Scholar 

  • Birch, D. G., & Anderson, J. L. (1992). Standardized Full-Field Electroretinography: Normal values and their variation with age. JAMA Ophthalmology,110(11), 1571–1576.

    Google Scholar 

  • Bush, R. A., & Sieving, P. A. (1994). A proximal retinal component in the primate photopic ERG a-wave. Investigative Ophthalmology & Visual Science,35(2), 635–645.

    Google Scholar 

  • Chapot, C. A., Euler, T., & Schubert, T. (2017). How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. Journal of Physiology,595(16), 5495–5506.

    PubMed  Google Scholar 

  • Chaste, P., & Leboyer, M. (2012). Autism risk factors: Genes, environment, and gene-environment interactions. Dialogues in Clinical Neuroscience,14(3), 281–292.

    PubMed  PubMed Central  Google Scholar 

  • Chisholm, K., Lin, A., Abu-Akel, A., & Wood, S. J. (2015). The association between autism and schizophrenia spectrum disorders: A review of eight alternate models of co-occurrence. Neuroscience and Biobehavioral Reviews,55, 173–183.

    PubMed  Google Scholar 

  • Chung, Y. S., Barch, D., & Strube, M. (2014). A meta-analysis of mentalizing impairments in adults with schizophrenia and autism spectrum disorder. Schizophrenia Bulletin,40(3), 602–616.

    PubMed  Google Scholar 

  • Coghlan, S., Horder, J., Inkster, B., Mendez, M. A., Murphy, D. G., & Nutt, D. J. (2012). GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neuroscience and Biobehavioral Reviews,36(9), 2044–2055.

    PubMed  PubMed Central  Google Scholar 

  • Constable, P. A., Gaigg, S. B., Bowler, D. M., Jägle, H., & Thompson, D. A. (2016). Full-field electroretinogram in autism spectrum disorder. Documenta Ophthalmologica,132(2), 83–99.

    PubMed  Google Scholar 

  • Dai, H., Jackson, C. R., Davis, G. L., Blakely, R. D., & McMahon, D. G. (2017). Is dopamine transporter-mediated dopaminergic signaling in the retina a noninvasive biomarker for attention-deficit/ hyperactivity disorder? A study in a novel dopamine transporter variant Val559 transgenic mouse model. Journal of Neurodevelopmental Disorders,9(1), 38.

    PubMed  PubMed Central  Google Scholar 

  • Dajani, D. R., Burrows, C. A., Odriozola, P., Baez, A., Nebel, M. B., Mostofsky, S. H., et al. (2019). Investigating functional brain network integrity using a traditional and novel categorical scheme for neurodevelopmental disorders. Neuroimage: Clinical,21, 101678. https://doi.org/10.1016/j.nicl.2019.101678.

    Article  Google Scholar 

  • Dhingra, A., & Vardi, N. (2012). mGlu receptors in the retina. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling,1(5), 641–653.

    PubMed  Google Scholar 

  • Doherty, J., Cooper, M., & Thapar, A. (2018). Advances in our understanding of the genetics of childhood neurodevelopmental disorders. Evid Based Ment Health,21(4), 171–172.

    PubMed  Google Scholar 

  • Eggers, E. D., & Lukasiewicz, P. D. (2006). Receptor and transmitter release properties set the time course of retinal inhibition. Journal of Neuroscience,26(37), 9413–9425.

    PubMed  Google Scholar 

  • Fatemi, S. H., & Folsom, T. D. (2015). GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophrenia Research,167(1–3), 42–56.

    PubMed  Google Scholar 

  • Gadow, K. D., Roohi, J., DeVincent, C. J., Kirsch, S., & Hatchwell, E. (2010). Glutamate transporter gene (SLC1A1) single nucleotide polymorphism (rs301430) and repetitive behaviors and anxiety in children with autism spectrum disorder. Journal of Autism and Developmental Disorders,40(9), 1139–1145.

    PubMed  PubMed Central  Google Scholar 

  • Gagné, A. M., Lavoie, J., Lavoie, M. P., Sasseville, A., Charron, M. C., & Hébert, M. (2010). Assessing the impact of non-dilating the eye on full-field electroretinogram and standard flash response. Documenta Ophthalmologica,121(3), 167–175.

    PubMed  Google Scholar 

  • Gagné, A. M., Moreau, I., St-Amour, I., Marquet, P., & Maziade, M. (2019). Retinal function anomalies in young offspring at genetic risk of schizophrenia and mood disorder: The meaning for the illness pathophysiology. Schizophrenia Research. https://doi.org/10.1016/j.schres.2019.06.021.

    Article  PubMed  Google Scholar 

  • Gotham, K., Pickles, A., & Lord, C. (2009). Standardizing ADOS scores for a measure of severity in autism spectrum disorders. Journal of Autism and Developmental Disorders,39(5), 693–705.

    PubMed  Google Scholar 

  • Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., et al. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics,51(3), 431–444.

    PubMed  PubMed Central  Google Scholar 

  • Guimaraes-Souza, E. M., Joselevitch, C., Britto, L. R. G., & Chiavegatto, S. (2019). Retinal alterations in a pre-clinical model of an autism spectrum disorder. Molecular Autism,10, 19. https://doi.org/10.1186/s13229-019-0270-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Habela, C. W., Song, H., & Ming, G. L. (2015). Modeling synaptogenesis in schizophrenia and autism using human iPSC derived neurons. Molecular and Cellular Neuroscience. https://doi.org/10.1016/j.mcn.2015.12.002.

    Article  PubMed  Google Scholar 

  • Hadley, D., Wu, Z. L., Kao, C., Kini, A., Mohamed-Hadley, A., Thomas, K., et al. (2014). The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nature Communications,5, 4074. https://doi.org/10.1038/ncomms5074.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, R., Bees, M. A., Chaplin, C. A., & McCulloch, D. L. (2007). The luminance-response function of the human photopic electroretinogram: A mathematical model. Vision Research,47(23), 2968–2972.

    PubMed  Google Scholar 

  • Hanna, M. C., & Calkins, D. J. (2007). Expression of genes encoding glutamate receptors and transporters in rod and cone bipolar cells of the primate retina determined by single-cell polymerase chain reaction. Mol Vis,13, 2194–2208.

    PubMed  Google Scholar 

  • Hébert, M., Gagné, A. M., Paradis, M. E., Jomphe, V., Roy, M. A., Mérette, C., et al. (2010). Retinal response to light in young nonaffected offspring at high genetic risk of neuropsychiatric brain disorders. Biological Psychiatry,67(3), 270–274.

    PubMed  Google Scholar 

  • Hébert, M., Merette, C., Gagne, A. M., Paccalet, T., Moreau, I., Lavoie, J., et al. (2020). The electroretinogram may differentiate schizophrenia from bipolar disorder. Biological Psychiatry,3(1), 263–270.

    Google Scholar 

  • Hébert, M., Merette, C., Paccalet, T., Emond, C., Gagne, A. M., Sasseville, A., et al. (2015). Light evoked potentials measured by electroretinogram may tap into the neurodevelopmental roots of schizophrenia. Schizophrenia Research,162(1–3), 294–295.

    PubMed  Google Scholar 

  • Hébert, M., Merette, C., Paccalet, T., Gagne, A. M., & Maziade, M. (2017). Electroretinographic anomalies in medicated and drug free patients with major depression: Tagging the developmental roots of major psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry,75, 10–15.

    PubMed  Google Scholar 

  • Hobby, A. E., Kozareva, D., Yonova-Doing, E., Hossain, I. T., Katta, M., Huntjens, B., et al. (2018). Effect of varying skin surface electrode position on electroretinogram responses recorded using a handheld stimulating and recording system. Documenta Ophthalmologica,137(2), 79–86.

    PubMed  Google Scholar 

  • Hoerder-Suabedissen, A., Oeschger, F. M., Krishnan, M. L., Belgard, T. G., Wang, W. Z., Lee, S., et al. (2013). Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia. Proceedings of the National academy of Sciences of the United States of America,110(9), 3555–3560.

    PubMed  PubMed Central  Google Scholar 

  • Holopigian, K., Clewner, L., Seiple, W., & Kupersmith, M. J. (1994). The effects of dopamine blockade on the human flash electroretinogram. Documenta Ophthalmologica,86, 1–10.

    PubMed  Google Scholar 

  • Ji, X., McFarlane, M., Liu, H., Dupuis, A., & Westall, C. A. (2019). Hand-held, dilation-free, electroretinography in children under 3 years of age treated with vigabatrin. Documenta Ophthalmologica,138(3), 195–203.

    PubMed  Google Scholar 

  • Kato, K., Kondo, M., Nagashima, R., Sugawara, A., Sugimoto, M., Matsubara, H., et al. (2017). Factors affecting mydriasis-free flicker ERGs recorded with real-time correction for retinal illuminance: Study of 150 young healthy subjects. Investigative Ophthalmology & Visual Science,58(12), 5280–5286.

    Google Scholar 

  • Kenny, E. M., Cormican, P., Furlong, S., Heron, E., Kenny, G., Fahey, C., et al. (2014). Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Molecular Psychiatry,19(8), 872–879.

    PubMed  Google Scholar 

  • Lachapelle, P., Rufiange, M., & Dembinska, O. (2001). A physiological basis for definition of the ISCEV ERG standard flash (SF) based on the photopic hill. Documenta Ophthalmologica,102(2), 157–162.

    PubMed  Google Scholar 

  • Lavoie, J., Illiano, P., Sotnikova, T. D., Gainetdinov, R. R., Beaulieu, J.-M., & Hébert, M. (2014a). The electroretinogram as a biomarker of central dopamine and serotonin: Potential relevance to psychiatric disorders. Biological Psychiatry,75(6), 479–486.

    PubMed  Google Scholar 

  • Lavoie, J., Maziade, M., & Hebert, M. (2014b). The brain through the retina: The flash electroretinogram as a tool to investigate psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry,48, 129–134.

    PubMed  Google Scholar 

  • Liu, H., Ji, X., Dhaliwal, S., Rahman, S. N., McFarlane, M., Tumber, A., et al. (2018). Evaluation of light- and dark-adapted ERGs using a mydriasis-free, portable system: Clinical classifications and normative data. Documenta Ophthalmologica,137(3), 169–181.

    PubMed  Google Scholar 

  • Luo, J., Norris, R. H., Gordon, S. L., & Nithianantharajah, J. (2018). Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Progress in Neuro-Psychopharmacology and Biological Psychiatry,84(Pt B), 424–439.

    PubMed  Google Scholar 

  • Luyster, R., Gotham, K., Guthrie, W., Coffing, M., Petrak, R., Pierce, K., et al. (2009). The Autism Diagnostic Observation Schedule-toddler module: A new module of a standardized diagnostic measure for autism spectrum disorders. Journal of Autism and Developmental Disorders,39(9), 1305–1320.

    PubMed  PubMed Central  Google Scholar 

  • McCulloch, D. L., Kondo, M., Hamilton, R., Lachapelle, P., Messias, A. M. V., Robson, A. G., et al. (2019). ISCEV extended protocol for the stimulus-response series for light-adapted full-field ERG. Documenta Ophthalmologica,138(3), 205–215.

    PubMed  Google Scholar 

  • McCulloch, D. L., Marmor, M. F., Brigell, M. G., Hamilton, R., Holder, G. E., Tzekov, R., et al. (2015). ISCEV Standard for full-field clinical electroretinography (2015 update). Documenta Ophthalmologica,130(1), 1–12.

    PubMed  Google Scholar 

  • McPartland, J. C. (2016). Considerations in biomarker development for neurodevelopmental disorders. Current Opinion in Neurology,29(2), 118–122.

    PubMed  PubMed Central  Google Scholar 

  • Mercer, A. J., & Thoreson, W. B. (2011). The dynamic architecture of photoreceptor ribbon synapses: Cytoskeletal, extracellular matrix, and intramembrane proteins. Visual Neuroscience,28(6), 453–471.

    PubMed  PubMed Central  Google Scholar 

  • Miura, G., Baba, T., Oshitari, T., & Yamamoto, S. (2018). Flicker electroretinograms of eyes with cataract recorded with RETeval system before and after mydriasis. Clinical Ophthalmology,12, 427–432.

    PubMed  Google Scholar 

  • Nowacka, B., Lubinski, W., Honczarenko, K., Potemkowski, A., & Safranow, K. (2015). Bioelectrical function and structural assessment of the retina in patients with early stages of Parkinson's disease (PD). Documenta Ophthalmologica,131(2), 95–104.

    PubMed  Google Scholar 

  • Pathania, M., Davenport, E. C., Muir, J., Sheehan, D. F., Lopez-Domenech, G., & Kittler, J. T. (2014). The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl Psychiatry,4, e374. https://doi.org/10.1038/tp.2014.16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzarelli, R., & Cherubini, E. (2011). Alterations of GABAergic signaling in autism spectrum disorders. Neural Plasticity,2011, 297153. https://doi.org/10.1155/2011/297153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Popova, E. (2014). Role of dopamine in distal retina. Journal of Comparative Physiology,200(5), 333–358.

    PubMed  Google Scholar 

  • Popova, E., & Kupenova, P. (2017). Interaction between the serotoninergic and GABAergic systems in frog retina as revealed by electroretinogram. Acta Neurobiologiae Experimentalis,77(4), 351–361.

    PubMed  Google Scholar 

  • Realmuto, G., Purple, R., Knobloch, W., & Ritvo, E. (1989). Electroretinograms (ERGs) in four autistic probands and six first-degree relatives. Canadian Journal of Psychiatry,34(5), 435–439.

    PubMed  Google Scholar 

  • Ritvo, E. R., Creel, D., Realmuto, G., Crandall, A. S., Freeman, B. J., Bateman, J. B., et al. (1988). Electroretinograms in autism: A pilot study of b-wave amplitudes. American Journal of Psychiatry,145(2), 229–232.

    PubMed  Google Scholar 

  • Robson, A. G., Nilsson, J., Li, S., Jalali, S., Fulton, A. B., Tormene, A. P., et al. (2018). ISCEV guide to visual electrodiagnostic procedures. Documenta Ophthalmologica,136(1), 1–26.

    PubMed  Google Scholar 

  • Rossignol, R., Ranchon-Cole, I., Paris, A., Herzine, A., Perche, A., Laurenceau, D., et al. (2014). Visual sensorial impairments in neurodevelopmental disorders: Evidence for a retinal phenotype in Fragile X Syndrome. PLoS ONE,9(8), e105996.

    PubMed  PubMed Central  Google Scholar 

  • Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 Risk Loci. Neuron,87(6), 1215–1233.

    PubMed  PubMed Central  Google Scholar 

  • Schwitzer, T., Lavoie, J., Giersch, A., Schwan, R., & Laprevote, V. (2015). The emerging field of retinal electrophysiological measurements in psychiatric research: A review of the findings and the perspectives in major depressive disorder. Journal of Psychiatric Research,70, 113–120.

    PubMed  Google Scholar 

  • Shen, Y., Rampino, M. A., Carroll, R. C., & Nawy, S. (2012). G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proceedings of the National Academy of Sciences of the United States of America,109, 8752–8757.

    PubMed  PubMed Central  Google Scholar 

  • Taylor, M. J., Martin, J., Lu, Y., Brikell, I., Lundstrom, S., Larsson, H., et al. (2019). Association of genetic risk factors for psychiatric disorders and traits of these disorders in a Swedish population twin sample. JAMA Psychiatry,76(3), 280–289.

    PubMed  Google Scholar 

  • Thoreson, W. B., & Mangel, S. C. (2012). Lateral interactions in the outer retina. Progress in Retinal and Eye Research,31, 407–441.

    PubMed  PubMed Central  Google Scholar 

  • Ueno, S., Kondo, M., Niwa, Y., Terasaki, H., & Miyake, Y. (2004). Luminance dependence of neural components that underlies the primate photopic electroretinogram. Investigative Ophthalmology & Visual Science,45(3), 1033–1040.

    Google Scholar 

  • Uzunova, G., Hollander, E., & Shepherd, J. (2014). The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: Autism spectrum disorders and fragile x syndrome. Current Neuropharmacology,12(1), 71–98.

    PubMed  PubMed Central  Google Scholar 

  • Wachtmeister, L. (1998). Oscillatory potentials in the retina: what do they reveal. Progress in Retinal and Eye Research,17(4), 485–521.

    PubMed  Google Scholar 

  • Wali, N., & Leguire, L. E. (1992). Fundus pigmentation and the dark-adapted electroretinogram. Documenta Ophthalmologica,80(1), 1–11.

    PubMed  Google Scholar 

  • Wechsler, D. (1999). Wechsler Abbreviated Intelligence Scale. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (2003). Wechsler Intelligence Scale for Children-Fourth Edition. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Youssef, P., Nath, S., Chaimowitz, G. A., & Prat, S. S. (2019). Electroretinography in psychiatry: A systematic literature review. European Psychiatry,62, 97–106.

    PubMed  Google Scholar 

  • Yu, L., Wu, Y., & Wu, B. L. (2015). Genetic architecture, epigenetic influence and environment exposure in the pathogenesis of Autism. Science China Life Sciences,58(10), 958–967.

    PubMed  Google Scholar 

  • Zhang, X., Piano, I., Messina, A., D'Antongiovanni, V., Cro, F., Provenzano, G., et al. (2019). Retinal defects in mice lacking the autism-associated gene Engrailed-2. Neuroscience. https://doi.org/10.1016/j.neuroscience.2019.03.061.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the participants and their families for their support. Quentin Davis and Joshua Santosa of LKC Technologies for programming the RETeval custom protocol.

Funding

This work was funded by research grants from the Alan B Slifka Foundation, National Institute of Health U19 MH108206, and National Institute for Health Research R01 MH100173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Constable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1306 kb)

Supplementary file2 (MP4 642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constable, P.A., Ritvo, E.R., Ritvo, A.R. et al. Light-Adapted Electroretinogram Differences in Autism Spectrum Disorder. J Autism Dev Disord 50, 2874–2885 (2020). https://doi.org/10.1007/s10803-020-04396-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-020-04396-5

Keywords

Navigation