Skip to main content
Log in

Gene Disrupting Mutations Associated with Regression in Autism Spectrum Disorder

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Approximately one-third of children with autism spectrum disorder (ASD) reportedly lose skills within the first 3 years, yet a causal mechanism remains elusive. Considering evidence of strong genetic effects for ASD and findings that distinct phenotypes in ASD associate with specific genetic events, we examined rates of parent-reported regression in the Simons Simplex Collection with likely gene disrupting mutations from five distinct classes: FMRP target genes, genes encoding chromatin modifiers, genes expressed preferentially in embryos, genes encoding postsynaptic density proteins, and essential genes. Children with ASD and mutations in postsynaptic density genes were more likely to experience regression, while a trend suggested that children with ASD and mutations in embryonic genes were less likely to have skill losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bacon, C., Schneider, M., Le Magueresse, C., Froehlich, H., Sticht, C., Gluch, C., et al. (2015). Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Molecular Psychiatry, 20(5), 632–639.

    Article  PubMed  Google Scholar 

  • Bailey, A., LeCouteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., & Rutter, M. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.

    Article  PubMed  Google Scholar 

  • Baird, G., Charman, T., Pickles, A., Chandler, S., Loucas, T., Meldrum, D.,et al. (2008). Regression, developmental trajectory and associated problems in disorders in the autism spectrum: The SNAP study. Journal of Autism and Developmental Disorders, 38(10), 1827–1836.

    Article  PubMed  Google Scholar 

  • Barger, B., Campbell, J., & McDonough, J. (2013). Prevalence and onset of regression within autism spectrum disorders: A meta-analytic review. Journal of Autism & Developmental Disorders, 43(4), 817–828

    Article  Google Scholar 

  • Bayés, A., van de Lagemaat, L., Collins, M., Croning, M., Whittle, I., Choudhary, J., & Grant, S. (2011). Characterisation of the proteome, diseases and evolution of the human postsynaptic density. Nature Neuroscience, 14(1), 19–21.

    Article  PubMed  Google Scholar 

  • Beaudet, A. L. (2007). Autism: highly heritable but not inherited. Nature Medicine, 13(5), 534–536.

    Article  PubMed  Google Scholar 

  • Bernabei, P., Cerquiglini, A., Cortesi, F., & D’Ardia, C. (2007). Regression versus no regression in the autistic disorder: Developmental trajectories. Journal of Autism and Developmental Disorders, 37(3), 580–588.

    Article  PubMed  Google Scholar 

  • Bernier, R., Golzio, C., Xiong, B., Stessman, H., Coe, B., Penn, O., et al. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 158, 263–276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti, A., Chen, A. W., & Varner, J. D. (2011). A review of the mammalian unfolded protein response. Biotechnology and Bioengineering, 108(12), 2777–2793.

    Article  PubMed  PubMed Central  Google Scholar 

  • Comoletti, D., De Jaco, A., Jennings, L. I., Flynn, R. E., Gaietta, G., Tsigelny, I., et al. (2004). The Arg451 Cys-Neuroligin-3 mutation associated with autism reveals a defect in protein processing. The Journal of Neuroscience, 24(20), 4889–4893.

    Article  PubMed  Google Scholar 

  • Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., et al. (2011). Neuron number and size in prefrontal cortex of children with autism. The Journal of the American Medical Association, 306(18), 2001–2010.

    Article  PubMed  Google Scholar 

  • Darnell, J., Van Driesche, S., Zhang, C., Ying, K., Hung, S., Mele, A., et al. (2011). FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell, 146, 247–261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deriziotis, P., O’Roak, B., Graham, S., Estruch, S., Dimitropoulou, D., Bernier, R., et al. (2014). De novo TBR1 mutations in sporadic autism disrupt protein functions. Nature Communications, 18(5), 4954.

    Article  Google Scholar 

  • DeStefano, F., & Chen, R. T. (2001). Autism and measles-mumps-rubella vaccination: Controversy laid to rest? CNS Drugs, 15(11), 831–837.

    Article  PubMed  Google Scholar 

  • Elias, G. M., Funke, L., Stein, V., Grant, S. G., Bredt, D. S., & Nicoll, R. A. (2006). Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron, 52(2), 307–320.

    Article  PubMed  Google Scholar 

  • Falivelli, G., De Jaco, A., Favaloro, F. L., Kim, H., Wilson, J., Dubi, N., et al. (2012). Inherited genetic variants in autism-related CNTNAP2 show perturbed trafficking and ATF6 activation. Human Molecular Genetics, 21(21), 4761–4773.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischbach, G. D., & Lord, C. (2010). The simons simplex collection: A resource for identification of autism genetic risk factors. Neuron, 68(2), 192–195.

    Article  PubMed  Google Scholar 

  • Fombonne, E., & Chakrabarti, S. (2001). No evidence for a new variant of measles-mumps-rubella-induced autism. Pediatrics, 8(4), 991–998.

    Google Scholar 

  • Frazier, T., Embacher, R., Tilot, A., Koenig, K., Mester, J., & Eng, C. (2014). Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Molecular Psychiatry. doi:10.1038/mp.2014.125.

    PubMed  PubMed Central  Google Scholar 

  • Fujita, E., Dai, H., Tanabe, Y., Zhiling, Y., Yamagata, T., Miyakawa, T., et al. (2010). Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations iin the synaptic cell adhesioin molecule, CADM1. Cell Death and Disease, 1(e47), 1–7.

    Google Scholar 

  • Georgi, B., Voight, B. F., & Bućan, M. (2013). From mouse to human: Evolutionary genomics analysis of human orthologs of essential genes. PLoS Genetics, 9(5), e1003484.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geschwind, D. H. (2011). Genetics of autism spectrum disorders. Trends in Cognitive Sciences, 15(9), 409–416.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giannotti, F., Cortesi, F., Cerquiglini, A., Miraglia, D., Vagnoni, C., Sebastiani, T., et al. (2008). An investigation of sleep characteristics, EEG abnormalities and epilepsy in developmentally regressed and non-regressed children with autism. Journal of Autism and Developmental Disorders, 38(10), 1888–1897.

    Article  PubMed  Google Scholar 

  • Goin-Kochel, R. P., Esler, A. N., Kanne, S. M., & Hus, V. (2014). Developmental regression among children with autism spectrum disorders: Onset, duration, and effects on functional outcomes. Research on Autism Spectrum Disorders, 8(2), 890–898.

    Article  Google Scholar 

  • Goin-Kochel, R. P., Mire, S. S., & Dempsey, A. G. (2015). Emergence of autism spectrum disorder in children from simplex families: Relations to parental perceptions of etiology. Journal of Autism and Developmental Disorders, 45(5), 1451–1463.

    Article  PubMed  Google Scholar 

  • Goin-Kochel, R. P., & Myers, B. J. (2005). Congenital versus regressive onset of autism spectrum disorders: Parents’ beliefs about causes. Focus on Autism and Other Developmental Disabilities, 20(3), 169–179.

    Article  Google Scholar 

  • Goin-Kochel, R.P., Abbacchi, A., Duku, E., & Constantino, J.N. (2010, May). Familial aggregation of regression status and ADOS parameters among individuals with ASD from the AGRE collection. Oral session presented at the 9th Annual International Meeting for Autism Research, Philadelphia, PA.

  • Goldberg, W. A., Osann, K., Filipek, P. A., Laulhere, T., Jarvis, K., Modahl, C., et al. (2003). Language and other regression: Assessment and timing. Journal of Autism and Developmental Disorders, 33(6), 607–616.

    Article  PubMed  Google Scholar 

  • Iossifov, I., O’Roak, B., Sanders, S., Ronemus, M., Krumm, N., Levy, D., et al. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515, 216–221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J., Ma, Z., Shi, M., Malty, R. H., Aoki, H., Minic, Z., et al. (2015). Identification of human neuronal protein complexes reveals biochemical activities and convergent mechanisms of action in autism spectrum disorders. Cell Systems, 1(5), 361–374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (1999). Autism diagnostic observation schedule manual. Los Angeles: Western Psychological Services.

    Google Scholar 

  • Lord, C., Shulman, C., & DiLavore, P. (2004). Regression and word loss in autistic spectrum disorders. Journal of Child Psychology and Psychiatry, 45(5), 936–955.

    Article  PubMed  Google Scholar 

  • Luyster, R., Richler, J., Risi, S., Hsu, W., Dawson, G., Bernier, R., et al. (2005). Early regression in social communication in autism spectrum disorders: A CPEA study. Developmental Neuropsychology, 27(3), 311–336.

    Article  PubMed  Google Scholar 

  • Lyst, M. J., & Bird, A. (2015). Rett syndrome: a complex disorder with simple roots. Nature Review Genetics, 16(5), 261–275.

    Article  Google Scholar 

  • Madsen, K. M., Hviid, A., Vestergaard, M., Schendel, D., Wohlfahrt, J., Thorsen, P., et al. (2002). A population-based study of measles, mumps, and rubella vaccination and autism. The New England Journal of Medicine, 347(19), 1477–1482.

    Article  PubMed  Google Scholar 

  • Matson, J. L., Wilkins, J., & Fodstad, J. C. (2010). Children with autism spectrum disorders: A comparison of those who regress vs. those who do not. Developmental Neurorehabilitation, 13(1), 37–45.

    Article  PubMed  Google Scholar 

  • Matus, S., Glimcher, L. H., & Hetz, C. (2011). Protein folding stress in neurodegenerative diseases: A glimpse into the ER. Current Opinion in Cell Biology, 23(2), 239–252.

    Article  PubMed  Google Scholar 

  • Meyer, D., Bonhoeffer, T., & Scheuss, V. (2014). Balance and stability of synaptic structures during synaptic slasticity. Neuron, 82(2), 430–443.

    Article  PubMed  Google Scholar 

  • Molloy, C. A., Keddache, M., & Martin, L. J. (2005). Evidence for linkage on 21q and 7q in a subset of autism characterized by developmental regression. Molecular Psychiatry, 10(8), 741–746.

    Article  PubMed  Google Scholar 

  • Molloy, C. A., Morrow, A. L., Meinzen-Derr, J., Dawson, G., Bernier, R., Dunn, M., et al. (2006). Familial autoimmune thyroid disease as a risk factor for regression in children with autism spectrum disorder: A CPEA study. Journal of Autism and Developmental Disorders, 36(3), 317–324.

    Article  PubMed  Google Scholar 

  • Momoi, T., Fujita, E., Senoo, H., & Momoi, M. (2010). Genetic factors and epigenetic factors for autism: Endoplasmic reticulum stress and impaired synaptic function. Cell Biology International, 34(1), 13–19.

    Google Scholar 

  • Muhle, R., Trentacoste, S. V., & Rapin, I. (2004). The genetics of autism. Pediatrics, 113, 472–486.

    Article  Google Scholar 

  • Murata, Y., & Constantine-Paton, M. (2013). Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. The Journal of Neuroscience, 33(11), 5040–5052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordahl, C. W., Lange, N., Li, D. D., Barnett, L. A., Lee, A., Buonocore, M. H., et al. (2011). Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders. Proceedings of the National Academy of Sciences of the Unites States of America, 108(50), 20195–20200.

    Article  Google Scholar 

  • O’Roak, B., Derizioti, P., Lee, C., Vives, L., Schwartz, J., Girirajan, S., et al. (2011). Exome sequencing in sporadic autism reveals severe de novo mutations. Nature Genetics, 43, 585–589.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Roak, B., Stessman, H., Boyle, E., Witherspoon, K., Martin, B., Lee, C., et al. (2014). Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nature Communication, 5, 5595.

    Article  Google Scholar 

  • O’Roak, B., Vives, L., Fu, W., Egertson, J., Stanaway, I., Phelps, I., et al. (2012a). Massively multiplex targeted sequencing identifies genes recurrently disrupted in autism spectrum disorders. Science, 338, 1619–1622.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Roak, B., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B., et al. (2012b). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246–250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Offit, P. A. (2008). Autism’s false prophets. New York: Columbia University Press.

    Book  Google Scholar 

  • Ozonoff, S., Iosif, A. M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T., et al. (2010). A prospective study of the emergence of early behavioral signs of autism. Journal of the American Academy of Child & Adolescent Psychiatry, 49(3), 256–266.

    Google Scholar 

  • Ozonoff, S., Young, G. S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum, L., et al.(2011). Recurrence risk for autism spectrum disorders: A Baby Siblings Research Consortium study. Pediatrics, 128(3), e488–e495.

    PubMed  PubMed Central  Google Scholar 

  • Parker, S. K., Schwartz, B., Todd, J., & Pickering, L. K. (2004). Thimerosal-containing vaccines and autistic spectrum disorder: A critical review of published original data. Pediatrics, 114(3), 793–804.

    Article  PubMed  Google Scholar 

  • Parr, J. R., Lamb, J. A., Bailey, A. J., & Monaco, A. P. (2006). Response to paper by Molloy et al.: Linkage on 21q and 7q in autism subset with regression. Molecular Psychiatry, 11, 617–619.

    Article  PubMed  Google Scholar 

  • Parr, J. R., Le Couteur, A., Baird, G., Rutter, M., Pickles, A., Fombonne, E., & Bailey, A. J. (2011). Early developmental regression in autism spectrum disorder: Evidence from an international multiplex sample. Journal of Autism and Developmental Disorders, 41(3), 332–340.

    Article  PubMed  Google Scholar 

  • Pickles, A., Simonoff, E., Conti-Ramsden, G., Falcaro, M., Simkin, Z., Charman, T., et al. (2009). Loss of language in early development of autism and specific language impairment. Journal of Child Psychology and Psychiatry, 50, 843–852.

    Article  PubMed  Google Scholar 

  • Pierce, K., & Eyler, L. T. (2011). Structural and functional brain development in ASD: The impact of early brain overgrowth and considerations for treatment. In D. H. Fein (Ed.), The neuropsychology of autism (pp. 407–450). New York: Oxford University Press, Inc.

    Google Scholar 

  • Richler, J., Luyster, R., Risi, S., Hsu, W.-L., Dawson, G., Bernier, R., et al. (2006). Is there a regressive phenotype of autism spectrum disorder associated with the Measles-Mumps-Rubella vaccine? A CPEA study. Journal of Autism and Developmental Disorders, 36(3), 299–316.

    Article  PubMed  Google Scholar 

  • Rutter, M., LeCouteur, A., & Lord, C. (2003). Autism Diagnostic Interview-Revised. Los Angeles: Western Psychological Services.

    Google Scholar 

  • Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., et al. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70(5), 863–885. doi:10.1016/j.neuron.2011.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237–241. doi:10.1038/nature10945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shumway, S., Thurm, A., Swedo, S. E., Deprey, L., Barnett, L. A., Amaral, D. G., et al. (2011). Brief report: Symptom onset patterns and functional outcomes in young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 41(12), 1727–1732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiro, J., Beaudet, A. L., Brewton, C. M., Chu, Z., Dempsey, A. G., Evans, Y. L. et al. (2012). Simons Variation in Individuals Project (Simons VIP): A genetics-first approach to studying autism spectrum and related neurodevelopmental disorders. Neuron, 73, 1063–1067.

    Article  Google Scholar 

  • Steffenburg, S., Gillberg, C., Hellgren, I., et al. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden. Journal of Child Psychology and Psychiatry, 30, 405–416.

    Article  PubMed  Google Scholar 

  • Stessman, H., Bernier, R., & Eichler, E. (2014). A genotype-first approach to defining the subtypes of a complex disease. Cell, 156(5), 872–877.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swulius, M. T., Kubota, Y., Forest, A., & Waxham, M. N. (2010). Structure and composition of the postsynaptic density during development. Journal of Comparative Neurology, 518(20), 4243–4260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szatmari, P., Jones, M. B., Zwaigenbaum, I., & MacLean, J. E. (1998). The genetics of autism: An overview and new directions. Journal of Autism and Developmental Disorders, 28, 351–368.

    Article  PubMed  Google Scholar 

  • Taylor, L. E., Swerdfeger, A. L., & Eslick, G. D. (2014). Vaccines are not associated with autism: An evidence-based meta-analysis of case-control and cohort studies. Vaccine, 32(29), 3623–3629.

    Article  PubMed  Google Scholar 

  • Werner, E., Dawson, G., Munson, J., & Osterling, J. (2005). Variation in early developmental course in autism and its relation with behavioral outcome at 3–4 years of age. Journal of Autism and Developmental Disorders, 35(3), 337–350.

    Article  PubMed  Google Scholar 

  • Zhang, C., Milunsky, J. M., Newton, S., Ko, J., Zhao, G., Maher, T. A., et al. (2009). A Neuroligin-4 missense mutation associated with autism impairs Neuroligin-4 folding and ER export. Journal of Neuroscience, 29(35), 10843–10854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Xu, Q., Liu, J., Li, S. C., & Xu, X. (2012). Risk factors for autistic regression: Results of an ambispective cohort study. Journal of Child Neurology, 27(8), 975–981.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all of the families at the participating Simons Simplex Collection (SSC) sites, as well as the principal investigators (A. Beaudet, R. Bernier, J. Constantino, E. Cook, E. Fombonne, D. Geschwind, R. Goin-Kochel, E. Hanson, D. Grice, (A) Klin, D. Ledbetter, C. Lord, C. Martin, D. Martin, R. Maxim, J. Miles, O. Ousley, K. Pelphrey, (B) Peterson, J. Piggot, (C) Saulnier, M. State, W. Stone, J. Sutcliffe, C. Walsh, Z. Warren, E. Wijsman). We appreciate obtaining access to phenotypic data on SFARI Base. Approved researchers can obtain the SSC population dataset described in this study by applying at https://base.sfari.org.

Funding

Funding for this study was provided by the National Institutes for Mental Health (#R01MH100047 to R.B.) and by the Simons Foundation (SSC-15 to R.G.K. and SFARI #89368 to R.B.).

Author information

Authors and Affiliations

Authors

Contributions

RPG-K conceived of the study, participated in its design and coordination, interpretation of the data, and drafted the manuscript; ST participated in the interpretation of the data and helped to draft the manuscript; SB participated in the interpretation of the data and helped to draft the manuscript; RB conceived of the study, participated in its design and coordination, interpretation of the data, and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Robin P. Goin-Kochel or Raphael Bernier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the current study through their initial participation in the Simons Simplex Collection.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Supplementary Table 2 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goin-Kochel, R.P., Trinh, S., Barber, S. et al. Gene Disrupting Mutations Associated with Regression in Autism Spectrum Disorder. J Autism Dev Disord 47, 3600–3607 (2017). https://doi.org/10.1007/s10803-017-3256-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-017-3256-4

Keywords

Navigation