Skip to main content
Log in

Spatial Frequency Priming of Scene Perception in Adolescents With and Without ASD

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

While most typically developing (TD) participants have a coarse-to-fine processing style, people with autism spectrum disorder (ASD) seem to be less globally and more locally biased when processing visual information. The stimulus-specific spatial frequency content might be directly relevant to determine this temporal hierarchy of visual information processing in people with and without ASD. We implemented a semantic priming task in which (in)congruent coarse and/or fine spatial information preceded target categorization. Our results indicated that adolescents with ASD made more categorization errors than TD adolescents and needed more time to process the prime stimuli. Simultaneously, however, our findings argued for a processing advantage in ASD, when the prime stimulus contains detailed spatial information and presentation time permits explicit visual processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptuallearning. Trends in Cognitive Sciences, 8, 457–464.

    Article  PubMed  Google Scholar 

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csáki (Eds.), Proceedings of the 2nd international symposium on information theory (pp. 267–281). Budapest: Akadémiai Kiadó.

    Google Scholar 

  • American Psychiatric Association (2000). Diagnostic and statistical manual of mentaldisorders DSM-IV-TR fourth edition (4th ed.). Arlington: American Psychiatric Publishing, Inc.

    Google Scholar 

  • Bach, M. (1996). The Freiburg Visual Acuity Test-automatic measurement of visual acuity. Optometry and Vision Science, 73, 49–53.

    Article  PubMed  Google Scholar 

  • Bacon-Macé, N., Macé, M. J.-M., Fabre-Thorpe, M., & Thorpe, S. J. (2005). The time course of visual processing: Backward masking and natural scene categorisation. Vision Research, 45, 1459–1469.

    Article  PubMed  Google Scholar 

  • Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15, 600–609.

    Article  PubMed  Google Scholar 

  • Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17.

    Article  PubMed  Google Scholar 

  • Bates, D. (2005). Fitting linear models in R. R News, 5, 27–30.

    Google Scholar 

  • Belmonte, M. K., & Yurgelun-Todd, D. A. (2003). Functional anatomy of impaired selective attention and compensatory processing in autism. Cognitive Brain Research, 17, 651–664.

    Article  PubMed  Google Scholar 

  • Boeschoten, M. A., Kenemans, J. L., Van Engeland, H., & Kemner, C. (2007). Abnormal spatial frequency processing in high-functioning children with pervasive developmental disorder (PDD). Clinical Neurophysiology, 118, 2076–2088.

    Article  PubMed  Google Scholar 

  • Booth, R. D., & Happé, F. G. (2016). Evidence of reduced global processing in autism spectrum disorder. Journal of Autism and Developmental Disorders, 1, 1–12. doi:10.1007/s10803-016-2724-6.

    Google Scholar 

  • Brand, J., & Johnson, A. P. (2015). Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization. Frontiers in Psychology, 5, 1–19. doi:10.3389/fpsyg.2014.01274.

    Google Scholar 

  • Church, B., Krauss, M. S., Lopata, C., Toomey, J. A., Thomeer, M. L., Coutinho, M. V., Volker, M., & Mercado, E. (2010). Atypical categorization in children with high functioning autism spectrum disorder. Psychonomic Bulletin & Review, 17, 864–868.

  • Collins, J. W., & Carney, L. G. (1990). Visual performance in high myopia. Current Eye Research, 9, 217–224.

    Article  PubMed  Google Scholar 

  • de Bildt, A., Sytema, S., van Lang, N. D. J., Minderaa, R. B., van Engeland, H., & de Jonge, M. V. (2009). Evaluation of the ADOS revised algorithm: The applicability in 558 Dutch children and adolescents. Journal of Autism and Developmental Disorders, 39, 1350–1358. doi: 10.1007/s10803-009-0749-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deruelle, C., & Fagot, J. (2005). Categorizing facial identities, emotions, and genders: Attention to high- and low-spatial frequencies by children and adults. Journal of Experimental Child Psychology, 90, 172–184.

    Article  PubMed  Google Scholar 

  • Deruelle, C., Rondan, C., Salle-Collemiche, X., Bastard-Rosset, D., & Da Fonséca, D. (2008). Attention to low-and high-spatial frequencies in categorizing facial identities, emotions and gender in children with autism. Brain and Cognition, 66, 115–123.

    Article  PubMed  Google Scholar 

  • Edwards, D. J., Perlman, A., & Reed, P. (2012). Unsupervised categorization in a sample of children with autism spectrum disorders. Research in Developmental Disabilities, 33, 1264–1269.

  • Frith, U. (1989). Autism: Explaining the enigma. Oxford: Blackwell.

  • Frith, U., & Happé, F. (1994). Autism: Beyond “theory of mind”. Cognition, 50, 115–132.

    Article  PubMed  Google Scholar 

  • Galwey, N. W. (2014). Introduction to mixed modelling: beyond regression and analysis of variance. New Jersey: Wiley.

    Book  Google Scholar 

  • Gastgeb, H. Z., & Strauss, M. S. (2012). Categorization in ASD: The role of typicality and development. SIG 1 Perspectives on Language Learning and Education, 19, 66–74.

    Article  Google Scholar 

  • Gastgeb, H. Z., Strauss, M. S., & Minshew, N. J. (2006). Do individuals with autism process categories differently? The effect of typicality and development. Child Development, 77, 1717–1729.

    Article  PubMed  Google Scholar 

  • Gotham, K., Risi, S., Pickles, A., & Lord, C. (2006). The autism diagnostic observation schedule: Revised algorithms for improved diagnostic validity. Journal of Autism and Developmental Disorders, 37, 613–627. doi: 10.1007/s10803-006-0280-1.

    Article  PubMed  Google Scholar 

  • Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95–112.

    Article  Google Scholar 

  • Guy, J., Mottron, L., Berthiaume, C., & Bertone, A. (2016). A developmental perspective of global and local visual perception in autism spectrum disorder. Journal of Autism and Developmental Disorders, 1–15.

  • Happé, F., & Booth, R. (2008). The power of the positive: Revisiting weak coherence in autism spectrum disorders. The Quarterly Journal of Experimental Psychology, 61, 50–63.

    Article  PubMed  Google Scholar 

  • Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36, 5–25.

    Article  PubMed  Google Scholar 

  • Hegdé, J. (2008). Time course of visual perception: Coarse-to-fine processing and beyond. Progress in Neurobiology, 84, 405–439.

    Article  PubMed  Google Scholar 

  • Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36, 791–804.

    Article  PubMed  Google Scholar 

  • Ingersoll, B., Hopwood, C. J., Wainer, A., & Donnellan, M. B. (2011). A comparison of three self-report measures of the broader autism phenotype in a non-clinical sample. Journal of Autism and Developmental Disorders, 41, 1646–1657.

    Article  PubMed  Google Scholar 

  • Johnson, C. R., & Rakison, D. H. (2006). Early categorization of animate/inanimate concepts in young children with autism. Journal of Developmental and Physical Disabilities, 18, 73–89.

    Article  Google Scholar 

  • Joubert, O. R., Rousselet, G. A., Fabre-Thorpe, M., & Fize, D. (2009). Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise. Journal of Vision, 9, 1–16. doi:10.1167/9.1.2.

    Article  PubMed  Google Scholar 

  • Kauffmann, L., Chauvin, A., Pichat, C., & Peyrin, C. (2015). Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes: A dynamic causal modeling study. Brain and Cognition, 99, 46–56.

    Article  PubMed  Google Scholar 

  • Keehn, B., Müller, R. A., & Townsend, J. (2013). Atypical attentional networks and the emergence of autism. Neuroscience and Biobehavioral Reviews, 37, 164–183.

    Article  PubMed  Google Scholar 

  • Kéïta, L., Guy, J., Berthiaume, C., Mottron, L., & Bertone, A. (2014). An early origin for detailed perception in autism spectrum disorder: Biased sensitivity for high-spatial frequency information. Scientific Reports, 4, 1–6. doi:10.1038/srep05475.

    Google Scholar 

  • Kenworthy, L., Yerys, B. E., Anthony, L. G., & Wallace, G. L. (2008). Understanding executive control in autism spectrum disorders in the lab and in the real world. Neuropsychology Review, 18, 320–338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koldewyn, K., Jiang, Y. V., Weigelt, S., & Kanwisher, N. (2013). Global/local processing in autism: Not a disability, but a disinclination. Journal of Autism and Developmental Disorders, 43, 2329–2340.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2012). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24, 61–79.

    Article  PubMed  Google Scholar 

  • Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (1999). Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  • Mack, M. L., & Palmeri, T. J. (2011). The timing of visual object categorization. Frontiers in Psychology, 2, 165–173. doi:10.3389/fpsyg.2011.00165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. Cambridge: Cambridge University Press.

    Google Scholar 

  • McArdle, B. H. (1987). The significance of differences between means. A simulation study. Comparative Biochemistry and Physiology, 87 A, 979–982.

    Article  Google Scholar 

  • McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 6, 285–292.

    Article  Google Scholar 

  • Milne, E., & Szczerbinski, M. (2009). Global and local perceptual style, field independence, and central coherence: An attempt at concept validation. Advances in Cognitive Psychology, 5, 1–26. doi:10.2478/v10053-008-0062-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minshew, N. J., Meyer, J., & Goldstein, G. (2002). Abstract reasoning in autism: A disassociation between concept formation and concept identification. Neuropsychology, 16, 327–334.

    Article  PubMed  Google Scholar 

  • Mottron, L., & Burack, J. (2001). Enhanced perceptual functioning in the development of autism. J. A. Burack, T. Charman, N. Yirmiya, & P. R. Zelazo (Eds.), The development of autism: Perspectives from theory and research (pp. 131–148). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Mottron, L., & Burack, J. (2006). Autism : A different perception. Journal of Autism and Developmental Disorders, 36, 1–3.

    Article  Google Scholar 

  • Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43.

    Article  PubMed  Google Scholar 

  • Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34, 72–107.

    Article  PubMed  Google Scholar 

  • Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42, 145–175.

    Article  Google Scholar 

  • Peirce, J. W. (2008). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2, 1–8. doi:10.3389/neuro.11.010.2008.

    Article  Google Scholar 

  • Plaisted, K. C. (2001). Reduced generalization in autism: An alternative to weak central coherence. The development of autism: Perspectives from theory and research, 2, 149–169.

    Google Scholar 

  • R Core Team (2013). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN: 3-900051-07-0.

    Google Scholar 

  • Roeyers, H., Thys, M., Druart, C., De Schryver, M., & Schittekatte, M. (2011). SRS: Screeningslijst voor autismespectrumstoornissen, handleiding. Amsterdam: Hogrefe Uitgevers.

    Google Scholar 

  • Ruzich, E., Allison, C., Smith, P., Watson, P., Auyeung, B., Ring, H., et al. (2015). Subgrouping siblings of people with autism: Identifying the broader autism phenotype. Autism Research, 6, 658–665. doi:10.1002/aur.1544.

    Google Scholar 

  • Sattler, J. M. (2001). Assessment of children: Cognitive applications (4th ed.). San Diego, CA: Jerome M Sattler Publisher Inc.

    Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5, 195–200.

    Article  Google Scholar 

  • Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49, 2705–2739.

    Article  PubMed  Google Scholar 

  • Spek, A. A., Scholte, E. M., & Van Berckelaer-Onnes, I. A. (2011). Local information processing in adults with high functioning autism and Asperger syndrome: The usefulness of neuropsychological tests and self-reports. Journal of Autism and Developmental Disorders, 41, 859–869.

    Article  PubMed  Google Scholar 

  • Sutherland, A., & Crewther, D. P. (2010). Magnocellular visual evoked potential delay with high autism spectrum quotient yields a neural mechanism for altered perception. Brain: A Journal of Neurology, 1, 1–9. doi:10.1093/brain/awq122.

    Article  Google Scholar 

  • Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.

    Article  PubMed  Google Scholar 

  • Van der Hallen, R., Evers, K., Brewaeys, K., Van Den Noortgate, W., & Wagemans, J. (2015). Global processing takes time: A meta-analysis on local/global visual processing in ASD. Psychological Bulletin, 141, 549–573.

    Article  PubMed  Google Scholar 

  • Vanmarcke, S., & Wagemans, W. (2016). Individual differences in spatial frequency processing in scene perception: The influence of autism-related traits. Visual Cognition, 24, 115–131.

    Article  Google Scholar 

  • Vanmarcke, S., Mullin, C., Van der Hallen, R., Evers, K., Noens, I., Steyaert, J., & Wagemans, J. (2016). In the eye of the beholder: Rapid visual perception of real- life scenes by young adults with and without ASD. Journal of Autism and Developmental Disorders, 1, 1–18. doi:10.1007/s10803-016-2802-9.

    Google Scholar 

  • Vlamings, P. H. J. M., Jonkman, L. M., van Daalen, E., van der Gaag, R. J., & Kemner, C. (2010). Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder. Biological Psychiatry, 68, 1107–1113.

    Article  PubMed  Google Scholar 

  • Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54, 426–482.

    Article  Google Scholar 

  • Wechsler, D. (1997). Wechsler adult intelligence scale. (3rd edition). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wichmann, F. A., Braun, D. I., & Gegenfurtner, K. R. (2006). Phase noise and the classification of natural images. Vision Research, 46, 1520–1529.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Foundation-Flanders (FWO) to Steven Vanmarcke and long-term structural funding by the Flemish Government (METH/14/02) to Johan Wagemans. We would like to thank all participants for their time and contribution to this research.

Author contributions

SV conceived of the study, participated in its design, coordination, measurement and analysis. He also drafted the manuscript; IN participated in the design and interpretation of the data; JS participated in the design and interpretation of the data; JW participated in the design, analysis and interpretation of the data. All authors read, commented and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Vanmarcke.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from both the participants themselves and their parents before onset of the experiment.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 685 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanmarcke, S., Noens, I., Steyaert, J. et al. Spatial Frequency Priming of Scene Perception in Adolescents With and Without ASD. J Autism Dev Disord 47, 2023–2038 (2017). https://doi.org/10.1007/s10803-017-3123-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-017-3123-3

Keywords

Navigation