Skip to main content
Log in

Enhanced photoelectronic performance of MoS2 nanosheets decorated TiO2 nanotube arrays via simultaneously promoting light absorption and charge separation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Both light absorption and charge separation are highly important to the photoelectronic performance of semiconductor-based electrodes. Herein, we describe the fabrication of TiO2 nanotube arrays (NTAs) decorated with dual-functional molybdenum disulfide (MoS2) nanosheets using a facile hydrothermal method. The obtained MoS2/TiO2 heterojunction shows a high photocurrent density of 0.76 mA cm−2 at 1.23 VRHE (V vs. the reversible hydrogen electrode), which is over five times higher than that of pristine TiO2 NTAs. The enhanced photoelectronic performance is mainly attributed to the synergistic effect between the extended light absorption and improved charge separation after the introduction of MoS2 nanosheet. This simple yet general strategy provides a unique platform to improve the catalytic activity of photoelectrode materials with a narrow band-gap.

Graphical abstract

Both light absorption and charge separation are simultaneously enhanced via the fabrication of MoS2 nanosheets covered the top of TiO2 nanotube arrays (NTAs) to form MoS2/TiO2 heterojunction. This simple yet general strategy provides a unique platform to improve the catalytic activity of photoelectrode materials with a narrow band-gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kment S, Riboni F, Pausova S, Wang L, Wang L, Han H, Hubicka Z, Krysa J, Schmuki P, Zboril R (2017) Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev 46:3716–3769

    Article  CAS  PubMed  Google Scholar 

  2. Gao C, Wei T, Zhang Y, Song X, Huan Y, Liu H, Zhao M, Yu J, Chen X (2019) A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Adv Mater 31:1806596

    Article  Google Scholar 

  3. Huang J, Wang Y, Liu X, Li Y, Hu X, He B, Shu Z, Li Z, Zhao Y (2019) Synergistically enhanced charge separation in BiFeO3/Sn:TiO2 nanorod photoanode via bulk and surface dual modifications. Nano Energy 59:33–40

    Article  CAS  Google Scholar 

  4. Wang J, Wang Z, Wang W, Wang Y, Hu X, Liu J, Gong X, Miao W, Ding L, Li X, Tang J (2022) Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale 14:6709–6734

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Wang F, Huang H, Li H, Han X, Liu Y, Kang Z (2013) Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale 5:2274–2278

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Liu X, Li Z, Cao Y, Li Y, Zhao Y (2017) Constructing synergetic trilayered TiO2 photoanodes based on a flexible nanotube array/Ti substrate for efficient solar cells. ChemNanoMat 3:58–64

    Article  CAS  Google Scholar 

  7. Zhou D, Chen Z, Yang Q, Shen C, Tang G, Zhao S, Zhang J, Chen D, Wei Q, Dong X (2016) Facile construction of g-C3N4 nanosheets/TiO2 nanotube arrays as Z-scheme photocatalyst with enhanced visible-light performance. ChemCatChem 8:3064–3073

    Article  CAS  Google Scholar 

  8. Wang M, Iocozzia J, Lan S, Lin C, Lin Z (2014) Correction: Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energ Environ Sci 7:2182–2202

    Article  CAS  Google Scholar 

  9. Wang Y, Sun S, Liu Y, Zhang Y, Xia J, Yang Q (2020) TiO2 coupled to predominantly metallic MoS2 for photocatalytic degradation of rhodamine B. J Mater Sci 55:12274–12286

    Article  CAS  Google Scholar 

  10. He B, Wang Y, Liu X, Li Y, Hu X, Huang J, Yu Y, Shu Z, Li Z, Zhao Y (2019) Spatial engineering of Co(OH)x encapsulated p-Cu2S/n-BiVO4 photoanode: simultaneously promoting charge separation and surface reaction kinetics in solar water splitting. J Mater Chem A 7:6747–6752

    Article  CAS  Google Scholar 

  11. Zhou X, Licklederer M, Schmuki P (2016) Thin MoS2 on TiO2 nanotube layers: an efficient co-catalyst/harvesting system for photocatalytic H2 evolution. Electrochem Commun 73:33–37

    Article  CAS  Google Scholar 

  12. Li Y, He B, Liu X, Hu X, Huang J, Ye S, Shu Z, Wang Y, Li Z (2019) Graphene confined MoS2 particles for accelerated electrocatalytic hydrogen evolution. Int J Hydrog Energy 44:8070–8078

    Article  CAS  Google Scholar 

  13. Ye L, Li H, Chen Z, Xu J (2016) Near-infrared photodetector based on MoS2/Black phosphorus heterojunction. ACS Photonics 3:692–699

    Article  CAS  Google Scholar 

  14. Maitra U, Gupta U, De M, Datta R, Govindaraj A, Rao CNR (2013) Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew Chem Int Ed 52:13057–13061

    Article  CAS  Google Scholar 

  15. Chuang H-J, Chamlagain B, Koehler M, Perera MM, Yan J, Mandrus D, Tománek D, Zhou Z (2016) Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett 16:1896–1902

    Article  CAS  PubMed  Google Scholar 

  16. Dong J, Huang J, Wang A, Biesold-McGee GV, Zhang X, Gao S, Wang S, Lai Y, Lin Z (2020) Vertically-aligned Pt-decorated MoS2 nanosheets coated on TiO2 nanotube arrays enable high-efficiency solar-light energy utilization for photocatalysis and self-cleaning SERS devices. Nano Energy 71:104579

    Article  CAS  Google Scholar 

  17. Chang K, Wang T, Kang Q, Kang Q, Ouyang S, Ye J (2014) MoS2/Graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8:7078–7087

    Article  CAS  PubMed  Google Scholar 

  18. Chen B, Meng Y, Sha J, Zhong C, Hu W, Zhao N (2018) Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale 10:34–68

    Article  CAS  Google Scholar 

  19. Zheng L, Han S, Liu H, Yu P, Fang X (2016) Hierarchical MoS2 nanosheet@TiO2 nanotube nrray composites with enhanced photocatalytic and photocurrent performances. Small 12:1527–1536

    Article  CAS  PubMed  Google Scholar 

  20. Ye M, Xin X, Lin C, Lin Z (2011) High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett 11:3214–3220

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Xin Y, Wu W, Fu B, Zhang Z (2016) Phosphorus cation doping: A new strategy for boosting photoelectrochemical performance on TiO2 nanotube photonic crystals. ACS Appl Mater Interfaces 8:30972–30979

    Article  CAS  PubMed  Google Scholar 

  22. Yin X-L, Li L-L, Jiang W-J, Zhang Y, Zhang X, Wan L-J, Hu J-S (2016) MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation. ACS Appl Mater Interfaces 8:15258–15266

    Article  CAS  PubMed  Google Scholar 

  23. Aflaki S, Farhadian M, Nazar ARS, Tangestaninejad S, Davari N (2021) Investigation of copper plates as anode and TiO2/glycine/ZnFe2O4 stabilized on graphite as cathode for textile dyes degradation from aqueous solution under visible light. J Appl Electrochem 51:1387–1405

    Article  CAS  Google Scholar 

  24. Momeni MM, Akbarnia M, Atapour M, Khalaghi M (2021) Preparation of chromium and sulfur single and co-doped TiO2 nanostructures for efficient photoelectrochemical water splitting: effect of aliphatic alcohols on their activity. J Solid State Electrochem 26:281–291

    Article  Google Scholar 

  25. de Almeida J, Pacheco MS, de Brito JF, de Rodrigues CA (2020) Contribution of CuxO distribution, shape and ratio on TiO2 nanotubes to improve methanol production from CO2 photoelectroreduction. J Solid State Electrochem 24:3013–3028

    Article  Google Scholar 

  26. Moakhar RS, Jalali M, Kushwaha A, Goh GKL, Riahi-Noori N, Dolati A, Ghorbani M (2018) AuPd bimetallic nanoparticle decorated TiO2 rutile nanorod arrays for enhanced photoelectrochemical water splitting. J Appl Electrochem 48:995–1007

    Article  Google Scholar 

  27. Jaleel UCJR, Devi KRS, Madhushree R, Pinheiro D (2021) Statistical and experimental studies of MoS2/g-C3N4/TiO2: a ternary Z-scheme hybrid composite. J Mater Sci 56:6922–6944

    Article  CAS  Google Scholar 

  28. Wang W, Zhu S, Cao Y, Tao Y, Li X, Pan D, Phillips DL, Zhang D, Chen M, Li G, Li H (2019) Edge-enriched ultrathin MoS2 embedded yolk-shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv Funct Mater 29:1901958

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51902297 and 52002361), and the Fund of the Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science (CHCL20001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Wu, Jing Huang or Junwei Wan.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Hu, Z., Wu, P. et al. Enhanced photoelectronic performance of MoS2 nanosheets decorated TiO2 nanotube arrays via simultaneously promoting light absorption and charge separation. J Appl Electrochem 53, 1259–1267 (2023). https://doi.org/10.1007/s10800-022-01842-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01842-3

Keywords

Navigation