Skip to main content
Log in

Electrochemical comparison of two sulfonated styrene PEM membranes synthesized by different methods

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The synthesis of two random copolymers was carried out by radical copolymerization. Poly(styrene-co-acrylic acid) in a 94:6 (St:AA) molar ratio, partially cross-linked with trimethylol propane trimethacrylate was synthesized by mass polymerization and then sulfonated (PSAAS-m) with sulfuric acid. On the other hand, the same random PSAA was synthesized by solution polymerization, but cross-linked with divinylbenzene and then sulfonated (PSAAS-s). Copolymers, including non sulfonated controls, were dissolved in THF and used to coat a platinum (Pt) electrode by “deep coating” and studied electrochemically by the voltamperometric cycle technique in 0.5 M H2SO4. Both non-sulfonated PSAA copolymers showed only a baseline signal, indicating no proton conductivity through them. The same result was obtained for the PSAAS-s copolymer, suggesting no proton conductivity as well. On the contrary, the copolymer synthesized in mass and highly sulfonated (PSAAS-m) showed the corresponding signals of Pt reduction, similar to the experiment carried out for the Pt electrode without any coating. Ion exchange capacity and water uptake measurements support the electrochemical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926

    Article  CAS  Google Scholar 

  2. Du B, Guo Q, Pollard R, Rodriguez D, Smith C, Elter J (2006) PEM fuel cells: status and challenges for commercial stationary power applications. JOM 58:45–49

    Article  CAS  Google Scholar 

  3. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4611

    Article  CAS  Google Scholar 

  4. Daletou MK, Kallitsis J, Neophytides SG (2011) Interfacial phenomena in electrocatalysis. Springer, New York

    Google Scholar 

  5. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Memb Sci 259:10–26

    Article  CAS  Google Scholar 

  6. da Silva L, da Silva FE, Franco CV, Nuernberg RB, Gomes T, Miranda R, Paula MMS (2009) Humidity and pH sensor based on sulfonated poly-{styrene–acrylic acid} polymer. Mater Sci Eng, C 29:599–601

    Article  Google Scholar 

  7. Oenning LW, Entrecruzamiento (2012) sulfonación e incorporación de nanopartículas metálicas en membranas de poli (estireno-co-ácido acrílico) y su implicación en celdas de combustible. Dissertation, Centro de Investigación en Química Aplicada

  8. Benavides R, Oenning L, Paula MMS, da Silva L (2014) Properties of polystyrene/acrylic acid membranes after sulphonation reactions. J New Mater Electrochem Syst 17:085–090

    CAS  Google Scholar 

  9. Luo Q, Zhang H, Chen J, Qian P, Zhai Y (2008) Modification of nafio membrane using interfacial polimerization for vanadium redox flow battery applications. J Memb Sci 311:98–103

    Article  CAS  Google Scholar 

  10. Suarez-Alcantara K, Solorza-Feria O (2010) Reacción de reducción de oxígeno. In: Rodriguez-Varela FJ, Solorza-Feria O, Hernández-Pacheco E (eds) Celdas de combustible. SMH, Ottawa, pp 47–68

    Google Scholar 

  11. Lim BR, Kim JW, Hwang SJ, Yoo SJ, Cho EA, Lim TH, Kim SK (2010) Fabrication and characterization of high-activity Pt/C electrocatalysts for oxygen reduction. Bull Korean Chem Soc 31:1577–1582

    Article  CAS  Google Scholar 

  12. Melo L, Benavides R, Martínez G, da Silva L, Paula MMS (2014) Degradation side reactions during sulphonation of poly(styrene-acrylic acid) used as membranes. Polym Deg Stab 109:343–352

    Article  CAS  Google Scholar 

  13. Angulo G, Kapturkiewicz A, Palmaerts A, Lutsen L, Cleij TJ, Vanderzande D (2009) Cyclic voltammetry studies of n-type polymers with non-alternant fluoranthene units. Electrochim Acta 54:1584–1588

    Article  CAS  Google Scholar 

  14. Conway BE, Angerstein-Kozlowska H, Sharp WBA, Criddle EE (1973) Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation. Anal Chem 45:1331–1336

    Article  CAS  Google Scholar 

  15. Zhou S, Hai SD, Kim D (2012) Cross-linked poly(arylene ether ketone) proton exchange membranes with high ion exchange capacity for fuel cells. Fuel Cell 12:589–598

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Consejo Nacional de Ciencia y Tecnología (CONACyT-México) is greatly acknowledged for the finance of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Benavides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benavides, R., Rodriguez, J.C.O., Melo, L. et al. Electrochemical comparison of two sulfonated styrene PEM membranes synthesized by different methods. J Appl Electrochem 45, 1211–1215 (2015). https://doi.org/10.1007/s10800-015-0877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0877-1

Keywords

Navigation