Skip to main content

Advertisement

Log in

Electrochemical performance of a Sb-doped SnO2 support synthesized by coprecipitation for oxygen reactions

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Highly dispersed platinum or platinum-based catalysts on a conductive support are commonly used as electrode materials in low-temperature fuel cells. Similarly, iridium oxide is the usual anode material in polymeric exchange membrane electrolyzers. The performance and, in particular, the stability of these catalysts strongly depends on the characteristics of the support. This study presents the results of the physicochemical and electrochemical characterization of the powers of antimony-doped tin oxide (ATO) synthesized by a chemical coprecipitation method and a minimum calcination time. These supports were used as catalytic supports for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The ATO was characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy, energy dispersive spectrometry and four probe resistivity techniques. The electrochemical properties were obtained by cyclic voltammetry (CV), linear voltammetry (LV) and rotating disk electrode (RDE). The material obtained showed nanometric sizes of 4–9 nm, and the electrochemical results indicate that the synthesized ATO nanoparticles can be used as a support for IrO2 and Pt in electrodes for PEM electrolyzers and fuel cells. Some mixtures of synthesized ATO and Vulcan carbon (VC) were assayed as mixed supports for ORR and OER and for acquiring a protective effect of ATO on the degradation of the carbon support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Antolini E (2010) Composite materials: an emerging class of fuel cell catalyst supports. Appl Catal B 100:413–426

    Article  CAS  Google Scholar 

  2. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119

    Article  CAS  Google Scholar 

  3. Long NV, Nogami M et al (2013) The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy 2:636–676

    Article  Google Scholar 

  4. Oviedo J, Gillan MJ (2000) Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf Sci 463:93–101

    Article  CAS  Google Scholar 

  5. Rajendran V, Anandan K (2012) Size, morphology and optical properties of SnO2 nanoparticles synthesized by facile surfactant-assisted solvothermal processing. Mater Sci Semicond Process 15:393–400

    Article  CAS  Google Scholar 

  6. Antolini E, Gonzalez ER (2009) Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ion 180:746–763

    Article  CAS  Google Scholar 

  7. Zhang D, Tao L et al (2006) Surface morphologies and properties of pure and antimony-doped tin oxide films derived by sol–gel dip-coating processing. Mater Chem Phys 100:275–280

    Article  CAS  Google Scholar 

  8. Lu HF, Hong RY et al (2012) Preparation of ATO nanorods and electrical resistivity analysis. Mater Lett 68:237–239

    Article  CAS  Google Scholar 

  9. Krishnakumar T, Jayaprakash R et al (2009) Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J Phys Chem Solids 70:993–999

    Article  CAS  Google Scholar 

  10. Hu P, Yang H, Ouyang J (2012) Synthesis and characterization of Sb–SnO2/kaolinites nanoparticles. Appl Clay Sci 55:151–157

    Article  CAS  Google Scholar 

  11. Hu Y, Zhang H, Yang H (2008) Synthesis and electrical property of antimony-doped tin oxide powders with barite matrix. J Alloy Compd 453:292–297

    Article  CAS  Google Scholar 

  12. Xu J, Qingfeng L et al (2012) Antimony doped tin oxides and their composites with tin pyrophosphates as catalyst supports for oxygen evolution reaction in proton exchange membrane water electrolysis. Int J Hydrog Energy 37:18629–18640

    Article  CAS  Google Scholar 

  13. Wang LS, Lu HF et al (2012) Synthesis and electrical resistivity analysis of ATO-coated talc. Powder Technol 224:124–128

    Article  CAS  Google Scholar 

  14. Zhukova AA, Rumyantseva MN et al (2009) Influence of antimony doping on structure and conductivity of tin oxide whiskers. Thin Solid Films 518:1359–1362

    Article  CAS  Google Scholar 

  15. Marshall AT, Haverkamp RG (2010) Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochim Acta 55:1978–1984

    Article  CAS  Google Scholar 

  16. Cruz JC, Rivas S, Beltran D et al (2012) Synthesis and evaluation of ATO as a support for Pt–IrO2 in a unitized regenerative fuel cell. Int J Hydrog Energy 37:13522–13528

    Article  CAS  Google Scholar 

  17. Jung DW, Park DW (2009) Synthesis of nano-sized antimony-doped tin oxide (ATO) particles using a DC arc plasma jet. Appl Surf Sci 255:5409–5413

    Article  CAS  Google Scholar 

  18. Kim DW, Kim DS et al (2006) Preparation of hard agglomerates free and weakly agglomerated antimony doped tin oxide (ATO) nanoparticles by coprecipitation reaction in methanol reaction medium. Mater Chem Phys 97:452–457

    Article  CAS  Google Scholar 

  19. Wu X, Scott K (2011) RuO2 supported on Sb-doped SnO2 nanoparticles for polymer electrolyte membrane water electrolysers. Int J Hydrog Energy 36:5806–5810

    Article  CAS  Google Scholar 

  20. Gurrola MP, Guerra M et al (2013) High surface electrochemical support based on Sb-doped SnO2. J Power Sources 243:826–830

    Article  CAS  Google Scholar 

  21. Pan C, Li Y et al (2011) Platinum–antimony doped tin oxide nanoparticles supported on carbon black as anode catalysts for direct methanol fuel cells. J Power Sources 196:6228–6231

    Article  CAS  Google Scholar 

  22. You DJ, Kwon K et al (2009) Platinum–antimony tin oxide nanoparticle as cathode catalyst for direct methanol fuel cell. Catal Today 146:15–19

    Article  CAS  Google Scholar 

  23. Sladkevich S, Kyi N et al (2011) Antimony doped tin oxide coating of muscovite clays by the Pechini route. Thin Solid Films 520:152–158

    Article  CAS  Google Scholar 

  24. Liu TJ, Jin ZG et al (2008) Conducting antimony-doped tin oxide films derived from stannous oxalate by aqueous sol–gel method. Appl Surf Sci 254:6547–6553

    Article  CAS  Google Scholar 

  25. Zhang D, Deng Z et al (2006) Microstructure and electrical properties of antimony-doped tin oxide thin film deposited by sol–gel process. Mater Chem Phys 98:353–357

    Article  CAS  Google Scholar 

  26. Benrabah B, Bouaza A et al (2011) Impedance studies of Sb doped SnO2 thin film prepared by sol gel process. Superlattices Microstruct 50:591–600

    Article  CAS  Google Scholar 

  27. Yang F, Zhang XJ et al (2007) Preparation of highly dispersed antimony-doped tin oxide nano-powder via ion-exchange hydrolysis of SnCl4 and SbCl3 and azeotropic drying. Chin J Aeronaut 20:181–186

    Article  Google Scholar 

  28. Yang F, Zhang XJ et al (2007) Preparation of highly dispersed antimony-doped tin oxide nanopowders by azeotropic drying with isoamyl acetate. Trans Nonferrous Metals Soc China 17:626–632

    Article  Google Scholar 

  29. Cruz JC, Bablio V et al (2012) Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells. Int J Hydrog Energy 37:5508–5517

    Article  CAS  Google Scholar 

  30. Siracusano S, Baglio V et al (2010) Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst. Int J Hydrog Energy 35:5558–5568

    Article  CAS  Google Scholar 

  31. Vazquez GL, Ferro S et al (2006) Preparation and characterization of RuO2–IrO2–SnO2 ternary mixtures for advanced electrochemical technology. Appl Catal B 67:34–40

    Article  Google Scholar 

  32. Zhang Y, Wang Ch et al (2007) Deposited RuO2–IrO2/Pt electrocatalyst for the regenerative fuel cell. Int J Hydrog Energy 32:400–404

    Article  CAS  Google Scholar 

  33. Mayousse E, Maillard F et al (2011) Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis. Int J Hydrog Energy 36:10474–10481

    Article  CAS  Google Scholar 

  34. Papazisi KM, Siokou A et al (2012) Preparation and characterization of IrxPt1−xO2 anode electrocatalysts for the oxygen evolution reaction. Int J Hydrog Energy 37:16642–16648

    Article  CAS  Google Scholar 

  35. Hu P, Yang H (2010) Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles. Appl Clay Sci 48:368–374

    Article  CAS  Google Scholar 

  36. Yang H, Hu Y, Qiu G (2002) Preparation of antimony-doped SnO2 nanocrystallites. Mater Res Bull 37(15):2453–2458

    Article  CAS  Google Scholar 

  37. Zheng M, Wang B (2009) One-step synthesis of antimony-doped tin dioxide nanocrystallites and their property. Trans Nonferrous Metals Soc China 19:404–409

    Article  CAS  Google Scholar 

  38. Xiaozhen L, Beiling Q (2007) Complexation-coprecipitation synthesis and characterization of erbium and antimony doped SnO2 conductive nanoparticles. J Rare Earths 25:72–76

    Article  Google Scholar 

  39. Li N, Meng Q, Zhang N (2014) Dispersion stabilization of antimony-doped tin oxide (ATO) nanoparticles used for energy-efficient glass coating. Particuology 17:49–53

    Article  CAS  Google Scholar 

  40. Bai F, Yun He et al (2006) One-step synthesis of monodispersed antimony-doped tin oxide suspension. Mater Lett 60:3126–3129

    Article  CAS  Google Scholar 

  41. Liu G, Xu J et al (2014) Nanosphere-structured composites consisting of Cs-substituted phosphotungstates and antimony doped tin oxides as catalyst supports for proton exchange membrane liquid water electrolysis. Int J Hydrog Energy 39:1914–1923

    Article  CAS  Google Scholar 

  42. Zhang J, Gao L (2004) Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles by a new hydrothermal method. Mater Chem Phys 87:10–13

    Article  CAS  Google Scholar 

  43. Gurrola MP, Gutiérrez J et al (2014) Evaluation of the corrosion of Sb-doped SnO2 supports for electrolysis systems. Int J Hydrog Energy 39:16763–16770

    Article  CAS  Google Scholar 

  44. Du Y, Yan J et al (2012) Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure. Mater Chem Phys 133:907–912

    Article  CAS  Google Scholar 

  45. Chen X (2005) Synthesis and characterization of ATO/SiO2 nanocomposite coating obtained by sol–gel method. Mater Lett 59:1239–1242

    Article  CAS  Google Scholar 

  46. Siracusano S, Stassi A et al (2013) Preparation and characterisation of Ti oxide based catalyst supports for low temperature fuel cells. Int Lorunal od Hydrog Energy 38:11600–11608

    Article  CAS  Google Scholar 

  47. Siracusano S, Baglio V et al (2009) Preparation and characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for application in SPE electrolysers. Electrochem Acta 54:6292–6299

    Article  CAS  Google Scholar 

  48. Ávila VV, Cruz JC (2013) Electrochemical Study of Sb-Doped SnO2 Supports on the Oxygen Evolution Reaction: Effect of Synthesis Annealing Time. Int J Electrochem Sci 8:10586–10600

    Google Scholar 

  49. Jung D, Park D (2009) Synthesis of nano-sized antimony-doped tin oxide (ATO) particles using a DC arc plasma jet. Appl Surf Sci 255:5409

    Article  CAS  Google Scholar 

  50. Manesse M, Sanjines R et al (2008) Preparation and characterization of antimony-doped SnO2 thin films on gold and silver substrates for electrochemical and surface plasmon resonance studies. Electrochem Commun 10:1041–1043

    Article  CAS  Google Scholar 

  51. Yin M, Junyuan X et al (2014) Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions. Appl Catal B 144:112–120

    Article  CAS  Google Scholar 

  52. Tsuchiva H, Kobayashi O (2004) Mass Production cost of PEM fuel cell by learning curve. Int J Hydrog Energy 29:985–990

    Article  Google Scholar 

  53. Cruz JC, Baglio VS et al (2011) Preparation and characterization of RuO2 catalysts for oxygen evolution in soild polymer electrolyte. Int J Electrochem Sci 6:6607–6619

    CAS  Google Scholar 

  54. Escalante IL, Durón SM et al (2010) Electrochemica characterization of IrO2-Pt and RuO2-Pt mixtures as bifunctional electrodes for unitized regenerative fuell cell. J New Mater Electrochem Syst 13:227–233

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Mexican CONACyT (Project 167012) for financial support of this work. V. Ávila-Vázquez thanks CONACyT for a graduate fellowship. In addition, we would like to thank MSc. Carlos Ornelas for his help in the HR-TEM sample characterization at the Laboratorio Nacional de Nanotecnología, CIMAV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Durón-Torres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila-Vázquez, V., Galván-Valencia, M., Ledesma-García, J. et al. Electrochemical performance of a Sb-doped SnO2 support synthesized by coprecipitation for oxygen reactions. J Appl Electrochem 45, 1175–1185 (2015). https://doi.org/10.1007/s10800-015-0876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0876-2

Keywords

Navigation