Skip to main content
Log in

Electrochemical study of Ir–Sn–Sb–O materials as catalyst-supports for the oxygen evolution reaction

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A novel material, with a general formula of Ir–Sn–Sb–O, was synthesized for use in solid polymer electrolyte water electrolyzers (SPEWEs) by the thermal decomposition of the chloride precursors H2IrCl6, SnCl4·5H2O, and SbCl3 in ethanol. The material functions simultaneously as an electrocatalyst and support for the oxygen evolution reaction (OER). Two different H2IrCl6 proportions in the reaction mixture were tested to observe the effect of this proportion on the electrocatalytic activity and composition of the materials. Physicochemical properties of Ir–Sn–S–O were characterized by X-ray diffraction, scanning electron microscopy. The electrochemical properties of the materials studied were measured using cyclic voltammetry, linear scan voltammetry, and electrochemical impedance spectroscopy. Mechanical mixtures of IrO2 with Vulcan carbon or antimony doped tin oxide were also tested with respect to the OER to compare the properties of Ir–Sn–Sb–O. The results indicate that the catalyst-support materials presented nanometric sizes (1–2 nm) and electrocatalytic properties similar to IrO2 supported on Vulcan carbon but with higher stability toward the oxygen evolution reaction. The synthesized mixed oxides could be a suitable anode material in SPEWEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Turner JA (1999) A realizable renewable energy future. Science 285:687–689. doi:10.1126/science.285.5428.687

    Article  CAS  Google Scholar 

  2. Turner JA (2004) Sustainable hydrogen production. Science 305:972–974. doi:10.1126/science.1103197

    Article  CAS  Google Scholar 

  3. Kadakia K, Datta MK, Velikokhatnyi OI, Jampani P, Park SK, Saha P, Poston JA, Manivannan A, Kumta PN (2012) Novel (Ir, Sn, Nb)O2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis. Int J Hydrog Energy 37:3001–3013. doi:10.1016/j.ijhydene.2011.11.055

    Article  CAS  Google Scholar 

  4. Grigoriev SA, Porembsky VI, Fateev VN (2006) Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrog Energy 31:171–175. doi:10.1016/j.ijhydene.2005.04.038

    Article  CAS  Google Scholar 

  5. Xu J, Li Q, Hansen MK, Christensen E, García ALT, Liu G, Wang X, Bjerrum NJ (2012) Antimony doped tin oxides and their composites with tin pyrophosphates as catalyst supports for oxygen evolution reaction in proton exchange membrane wáter electrolysis. Int J Hydrog Energy 37:18629–18640. doi:10.1016/j.ijhydene.2012.09.156

    Article  CAS  Google Scholar 

  6. Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers. Springer, London, pp 89–134. doi:10.1007/978-1-84800-936-3_2

    Chapter  Google Scholar 

  7. Sunde S, Lervik IA, Tsypkin M, Owe L-E (2010) Impedance analysis of nanostructured iridium oxide electrocatalysts. Electrochim Acta 55:7751–7760. doi:10.1016/j.electacta.2009.11.009

    Article  CAS  Google Scholar 

  8. Ardizzone S, Bianchi CL, Cappelletti G, Ionita M, Minguzzi A, Rondinini S, Vertova A (2006) Composite ternary SnO2–IrO2–Ta2O5 oxide electrocatalysts. J Electroanal Chem 589:160–166. doi:10.1016/j.jelechem.2006.02.004

    Article  CAS  Google Scholar 

  9. Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2006) Electrochemical characterisation of Ir x Sn1−x O2 powders as oxygen evolution electrocatalysts. Electrochim Acta 51:3161–3167. doi:10.1016/j.electacta.2005.09.004

    Article  CAS  Google Scholar 

  10. Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2007) Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—reduced energy consumption by improved electrocatalysis. Energy 32:431–436. doi:10.1016/j.energy.2006.07.014

    Article  CAS  Google Scholar 

  11. Pettersson J, Ramsey B, Harrison D (2006) A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells. J Power Sour 157:28–34. doi:10.1016/j.jpowsour.2006.01.059

    Article  CAS  Google Scholar 

  12. Nong HN, Oh H-S, Reier T, Willinger E, Petkov M-G et al (2015) Oxide-supported IrNiO x core–shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54:2975–2979. doi:10.1002/anie.201411072

    Article  CAS  Google Scholar 

  13. Wang X-M, Xia Y-Y (2010) The influence of the crystal structure of TiO2 support material on Pd catalysts for formic acid electrooxidation. Electrochim Acta 55:851–856. doi:10.1016/j.electacta.2009.09.037

    Article  CAS  Google Scholar 

  14. Paunović P, Popovski O, Fidančevska E, Ranguelov B, Gogovska DS, Dimitrov AT, Jordanov SH (2010) Co–Magneli phases electrocatalysts for hydrogen/oxygen evolution. Int J Hydrogen Energy 35:10073–10080. doi:10.1016/j.ijhydene.2010.07.143

    Article  Google Scholar 

  15. Du C, Chen M, Cao X, Yin G, Shi P (2009) A novel CNT@SnO2 core–sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochem Commun 11:496–498. doi:10.1016/j.elecom.2008.12.034

    Article  CAS  Google Scholar 

  16. Chhina H, Campbell S, Kesler O (2006) An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J Power Sour 161:893–900. doi:10.1016/j.jpowsour.2006.05.014

    Article  CAS  Google Scholar 

  17. Li N, Meng Q, Zhang N (2014) Dispersion stabilization of antimony-doped tin oxide (ATO) nanoparticles used for energy-efficient glass coating. Particuology. 17:49–53

    Article  CAS  Google Scholar 

  18. Rubel M, Haasch R, Morozek P, Wieckowski A, De Pauli C, Trasatti S (1994) Characterization of IrO2–SnO2 thin layers by electron and ion spectroscopies. Vacuum 45:423–427. doi:10.1016/0042-207X(94)90314-X

    Article  CAS  Google Scholar 

  19. De Pauli CP, Trasatti S (2002) Composite materials for electrocatalysis of O2 evolution: IrO2 + SnO2 in acid solution. J Electroanal Chem 538–539:145–151. doi:10.1016/S0022-0728(02)01055-0

    Article  Google Scholar 

  20. Fierro S, Kapałka A, Comninellis C (2010) Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution. Electrochem Commun 12:172–174. doi:10.1016/j.elecom.2009.11.018

    Article  CAS  Google Scholar 

  21. Ouattara L, Fierro S, Frey O, Koudelka M, Comninellis C (2009) Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution. J Appl Electrochem 39:1361–1367. doi:10.1007/s10800-009-9809-2

    Article  CAS  Google Scholar 

  22. Hu J-M, Zhang J-Q, Cao C-N (2004) Oxygen evolution reaction on IrO2-based DSA® type electrodes: kinetics analysis of Tafel lines and EIS. Int J Hydrogen Energy 29:791–797. doi:10.1016/j.ijhydene.2003.09.007

    Article  CAS  Google Scholar 

  23. Cruz JC, Baglio V, Siracusano S, Ornelas R, Ortiz-Frade L, Arriaga LG, Antonucci V, Aricò AS (2011) Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer. J Nanopart Res 13:1639–1646. doi:10.1007/s11051-010-9917-2

    Article  CAS  Google Scholar 

  24. Ávila-Vázquez V, Cruz JC, Galván-Valencia M, Ledesma-García J, Arriaga LG, Guzmán C, Durón-Torres SM (2013) Electrochemical study of Sb-doped SnO2 supports on the oxygen evolution reaction: effect of synthesis annealing time. Int J Electrochem Sci 8:10586–10600

    Google Scholar 

  25. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  26. Pauporte Th, Andolfatto F, Durand R (1999) Some electrocatalytic properties of anodic iridium oxide nanoparticles in acidic solution. Electrochim Acta 45:431–439. doi:10.1016/S0013-4686(99)00282-0

    Article  CAS  Google Scholar 

  27. Kinoshita K (1998) Carbon: electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  28. Balko EN, Nguyen PH (1991) Iridium-tin mixed oxide anode coatings. J Appl Electrochem 21:678–682. doi:10.1007/BF01034045

    Article  CAS  Google Scholar 

  29. Kadakia K, Datta MK, Velikokhatnyi OI, Jampani PH, Kumta PN (2014) Fluorine doped (Ir, Sn, Nb)O2 anode electro-catalyst for oxygen evolution via PEM based water electrolysis. Int J Hydrogen Energy 39:664–674. doi:10.1016/j.ijhydene.2013.10.123

    Article  CAS  Google Scholar 

  30. Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14:397–426. doi:10.1016/0254-0584(86)90045-3

    Article  CAS  Google Scholar 

  31. Da Silva LM, Boodts JFC, De Faria LA (2001) Oxygen evolution at RuO2(x) + Co3O4(1 − x) electrodes from acid solution. Electrochim Acta 46:1369–1375. doi:10.1016/S0013-4686(00)00716-7

    Article  Google Scholar 

  32. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, USA

    Book  Google Scholar 

  33. Audichon T, Mayousse E, Napporn TW, Morais C, Comminges C, Kokoh KB (2014) Elaboration and characterization of ruthenium nano-oxides for the oxygen evolution reaction in a Proton Exchange Membrane Water Electrolyzer supplied by a solar profile. Electrochim Acta 132:284–291. doi:10.1016/j.electacta.2014.03.141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Mexican Council for Science and Technology (CONACyT, Project 167012). N.J. Pérez thanks CONACyT for a graduate fellowship. In addition, we would like to thank MSc. Carlos Ornelas for his help in the SEM/EDAX sample characterization at the Laboratorio Nacional de Nanotecnología, CIMAV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Durón-Torres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Viramontes, N.J., Escalante-García, I.L., Guzmán-Martínez, C. et al. Electrochemical study of Ir–Sn–Sb–O materials as catalyst-supports for the oxygen evolution reaction. J Appl Electrochem 45, 1165–1173 (2015). https://doi.org/10.1007/s10800-015-0875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0875-3

Keywords

Navigation