Skip to main content
Log in

Investigation of oxygen reduction in alkaline media on electrocatalysts prepared by the mechanical alloying of Pt, Co, and Ni

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pt, PtCo, and PtNi electrocatalysts were prepared by mechanical alloying, and their activity for oxygen reduction reaction in 0.5 M KOH was investigated using cyclic voltammetry (CV) and rotating ring-disk electrode techniques. Electrocatalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Physical characterization showed that all electrocatalysts are alloys in the form of agglomerated particles that consist of nanocrystals. To perform an electrocatalytic evaluation, polarization curves, Koutecky–Levich and Tafel plots were obtained to calculate the kinetic parameters. Additionally, the molar fraction of the generated HO2 and the number of transferred electrons were determined. PtCo alloy showed a better performance for oxygen reduction reaction with a higher exchange current density, a lower overpotential, as well as higher specific and mass activities due to a synergistic effect between Pt and Co atoms as a result of the alloying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. O’ Hayre RP, Cha SW, Collela WG, Prinz FB (2009) Fuel cells fundamentals. Wiley, Hoboken

    Google Scholar 

  2. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  Google Scholar 

  3. Kordesch K, Simader G (1996) Fuel cells and their applications. VCH, Weinheim

    Book  Google Scholar 

  4. Rashkova V, Kitova S, Konstantinov I, Vitanov T (2002) Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction. Electrochim Acta 47:1555–1560

    Article  CAS  Google Scholar 

  5. Chi B, Li J, Han Y, Chen Y (2004) Effect of temperature on the preparation and electrocatalytic properties of a spinel NiCo2O4/Ni electrode. Int J Hydrog Energy 29:605–610

    Article  CAS  Google Scholar 

  6. Zhang Y, Cao X, Yuan H, Zhang W, Zhou Z (1999) Oxygen evolution reaction on Ni hydroxide film electrode containing various content of Co. Int J Hydrog Energy 24:529–536

    Article  Google Scholar 

  7. Castro EB, Gervasi CA, Vilche JR (1998) Oxygen evolution on electrodeposited cobalt oxides. J Appl Electrochem 28:835–841

    Article  CAS  Google Scholar 

  8. Mustain WE, Prakash J (2007) Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt–palladium electrocatalysts in acid media. J Power Sources 170:28–37

    Article  CAS  Google Scholar 

  9. Raghuveer V, Manthiram A, Bard AJ (2005) Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. J Phys Chem B 109:22909–22912

    Article  CAS  Google Scholar 

  10. Antolini E, Salgado JRC, Gonzalez ER (2005) Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells. J Electroanal Chem 580:145–154

    Article  CAS  Google Scholar 

  11. Kullapere M, Tammeveski K (2007) Oxygen electroreduction on anthraquinone-modified nickel electrodes in alkaline solution. Electrochem Commun 9:1196–1201

    Article  CAS  Google Scholar 

  12. Obradovic MD, Grgur BN, Vracar LJM (2003) Adsorption of oxygen containing species and their effect on oxygen reduction on Pt3Co electrode. J Electroanal Chem 548:69–78

    Article  CAS  Google Scholar 

  13. Kiros Y (1996) Electrocatalytic properties of Co, Pt, and Pt-Co on carbon for the reduction of oxygen in alkaline fuel cells. J Electrochem Soc 143:2152–2157

    Article  CAS  Google Scholar 

  14. Beard BC, Ross PN Jr (1990) The structure and activity of Pt-Co alloys as oxygen reduction electrocatalysts. J Electrochem Soc 137:3368–3374

    Article  CAS  Google Scholar 

  15. Lima FHB, Lizcano-Valbuena WH, Teixeira-Neto E, Nart FC, Gonzalez ER, Ticianelli EA (2006) Pt-Co/C nanoparticles as electrocatalysts for oxygen reduction in H2SO4 and H2SO4/CH3OH electrolytes. Electrochim Acta 52:385–393

    Article  CAS  Google Scholar 

  16. Lima FHB, Salgado JRC, Gonzalez ER, Ticianelli EA (2007) Electrocatalytic properties of PtCo/C and PtNi/C alloys for the oxygen reduction reaction in alkaline solution. J Electrochem Soc 154:A369–A375

    Article  CAS  Google Scholar 

  17. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224

    Article  CAS  Google Scholar 

  18. Benjamin JS (1992) Fundamentals of mechanical alloying. Mater Sci Forum 88–90:1–18

    Article  Google Scholar 

  19. El-Eskandarany MS (2001) Mechanical alloying for fabrication of advanced engineering materials. Noyes Publications, Norwich

    Google Scholar 

  20. Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New York

    Book  Google Scholar 

  21. Kedzierzawski P, Oleszak D, Janik-Czachor M (2001) Hydrogen evolution on hot and cold consolidated Ni–Mo alloys produced by mechanical alloying. Mater Sci Eng A300:105–112

    Article  CAS  Google Scholar 

  22. Lalande G, Denis MC, Gouérec P, Guay D, Dodelet JP, Schulz R (2000) Pt-based nanocomposites produced by high energy ball milling as electrocatalysts in polymer electrolyte fuel cells. J New Mater Electrochem Syst 3:185–192

    CAS  Google Scholar 

  23. De la Torre SD, Oleszak D, Kakitsuji A, Miyamoto K, Miyamoto H, Martinez SR, Almeraya-C F, Martinez-V A, Rios-J D (2000) Nickel-molybdenum catalysts fabricated by mechanical alloying and spark plasma sintering. Mater Sci Eng, A 276:226–235

    Article  Google Scholar 

  24. García-Contreras MA, Fernández-Valverde SM, Vargas-García JR, Cortés-Jácome MA, Toledo-Antonio JA, Ángeles-Chavez C (2008) Pt, PtCo and PtNi electrocatalysts prepared by mechanical alloying for the oxygen reduction reaction in 0.5 M H2SO4. Int J Hydrog Energy 33:6672–6680

    Article  Google Scholar 

  25. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  26. Takahashi I, Kocha S (2010) Examination of the activity and durability of PEMFC catalysts in liquid electrolytes. J Power Sources 195:6312–6322

    Article  CAS  Google Scholar 

  27. Garsany Y, Baturina OA, Swider-Lyons KE, Kocha S (2010) Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal Chem 82:6321–6328

    Article  CAS  Google Scholar 

  28. Albery WJ, Hitchman ML (1971) Ring-disc electrodes. Oxford University Press, Oxford, pp 17–28

    Google Scholar 

  29. Ye J-S, Cui HF, Liu X, Lim TM, Zhang WD, Sheu F-S (2005) Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1:560–565

    Article  CAS  Google Scholar 

  30. Senthil SM, Soler J, Irusta S, Scott K (2010) The effect of pretreatment of Vulcan XC-72R carbon on morphology and electrochemical oxygen reduction kinetics of supported Pd nano-particles in acidic electrolyte. J Electroanal Chem 647:211–221

    Article  Google Scholar 

  31. Oezaslan M, Hasché F, Strasser P (2012) Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J Electrochem Soc 159:B394–B405

    Article  CAS  Google Scholar 

  32. Nugent JM, Santhanam KSV, Rubio A, Ajayan PM (2001) Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett 1:87–91

    Article  CAS  Google Scholar 

  33. Clavilier J, Armand D, Wu BL (1982) Electrochemical study of the initial surface condition on platinum surfaces with (100) and (101) orientations. J Electroanal Chem 135:159–166

    Article  CAS  Google Scholar 

  34. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim Acta 47:3787–3798

    Article  CAS  Google Scholar 

  35. Hsueh KL, Gonzalez ER, Srinivasan S (1983) Electrolyte effects on oxygen reduction kinetics at platinum: a rotating ring-disc electrode analysis. Electrochim Acta 28:691–697

    Article  CAS  Google Scholar 

  36. Xing W, Yin G, Zhang J (2014) Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier Science & Technology, Waltham (Chap 1)

    Google Scholar 

  37. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145

    Article  CAS  Google Scholar 

  38. Albery WA, Bruckenstein S (1966) Ring-disc electrodes Part 2 theoretical and experimental collection efficiencies. Trans Faraday Soc 62:1920–1931

    Article  CAS  Google Scholar 

  39. Wu J, Zhang D, Wang Y, Wan Y, Hou B (2012) Catalytic activity of graphene–cobalt hydroxide composite for oxygen reduction reaction in alkaline media. J Power Sources 198:122–126

    Article  CAS  Google Scholar 

  40. Perez J, Tanaka AA, Gonzalez ER, Ticianelli EA (1994) Application of the flooded-agglomerate model to study oxygen reduction on thin porous coating rotating disk electrode. J Electrochem Soc 141:431–436

    Article  CAS  Google Scholar 

  41. Perez J, Gonzalez ER, Ticianelli EA (1998) Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochim Acta 44:1329–1339

    Article  CAS  Google Scholar 

  42. Lima FHB, Ticianelli EA (2004) Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum–cobalt electrodes in alkaline media. Electrochim Acta 49:4091–4099

    Article  CAS  Google Scholar 

  43. Lima FHB, Zhang J, Shao MH, Sasaki K, Vukmirovic MB, Ticianelli EA, Adzic RR (2007) Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C 111:404–410

    Article  CAS  Google Scholar 

  44. Subbaraman R, Danilovic N, Lopes PP, Tripkovic D, Strmcnik D, Stamenkovic VR, Markovic NM (2012) Origin of anomalous activities for electrocatalysts in alkaline electrolytes. J Phys Chem C 116:22231–22237

    Article  CAS  Google Scholar 

  45. Maryhofer KJJ, Wiberg GKH, Arenz M (2008) Impact of glass corrosion on the Electrocatalysis on Pt electrodes in alkaline electrolyte. J Electrochem Soc 155:P1–P5

    Article  Google Scholar 

  46. Xu X, Tan C, Liu H, Wang F, Li Z, Liu J, Ji J (2013) Carbon black supported ultra-high loading silver nanoparticle catalyst and its enhanced electrocatalytic activity towards oxygen reduction reaction in alkaline medium. J Electroanal Chem 696:9–14

    Article  CAS  Google Scholar 

  47. Wang C, Markovic NM, Stamenkovic VR (2012) Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal 2:891–898

    Article  CAS  Google Scholar 

  48. Maroun F, Ozanam F, Magnussen OM, Behm JR (2001) The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 293:1811–1814

    Article  CAS  Google Scholar 

  49. Burch R (1982) Importance of electronic ligand effects in metal alloy catalysts. Acc Chem Res 15:24–31

    Article  CAS  Google Scholar 

  50. Wang C, Daimon H, Onodera T, Koda T, Sun SH (2008) A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem Int Ed 47:3588–3591

    Article  CAS  Google Scholar 

  51. Li WZ, Chen ZW, Xu LB, Yan YS (2010) A solution-phase synthesis method to highly active Pt-Co/C electrocatalysts for proton exchange membrane fuel cell. J Power Sources 195:2534–2540

    Article  CAS  Google Scholar 

  52. Mazumder V, Chi MF, More KL, Sun SH (2010) Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. Angew Chem Int Ed 49:9368–9372

    Article  CAS  Google Scholar 

  53. Stamenkovic VR, Mun BS, Arenz M, Maryhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  54. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  55. Stamenkovic VR, Mun BS, Maryhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901

    Article  CAS  Google Scholar 

  56. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  57. Mukerjee S, Srinivasan S, Soriaga M, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction an in situ XANES and EXAFS investigation. J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  58. Xiong L, Manthiram A (2004) Influence of atomic ordering on the electrocatalytic activity of Pt–Co alloys in alkaline electrolyte and proton exchange membrane fuel cells. J Mater Chem 14:1454–1460

    Article  CAS  Google Scholar 

  59. Han BC, Miranda CR, Ceder G (2008) Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: a first-principles study. Phys Rev B 77:075410–1–075410-9

    Google Scholar 

  60. Min M, Cho J, Cho K, Kim H (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45:4211–4217

    Article  CAS  Google Scholar 

  61. Wu J, Yang H (2011) Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res 4:72–82

    Article  CAS  Google Scholar 

  62. Hofer W (1993) Surface segregation of PtNi alloys-comparing theoretical and experimental results. J Anal Chem 346:246–251

    Article  CAS  Google Scholar 

  63. Modak S, Gangopadhyay S (1991) Surface segregation of Pt-Ni alloys. Solid State Commun 78:429–432

    Article  CAS  Google Scholar 

  64. Choi SY, Kwon YS, Hong SC, Lee JI, Wu RQ (2001) Surface segregation and magnetism of an alloy surface: PtNi (001). J Magn Magn Mater 226–230:1662–1663

Download references

Acknowledgments

This work was performed as part of project CB-304 at ININ, Mexico. The authors deeply acknowledge the technical support of C. Salinas (SEM, EDX), M. Espinosa, I. Martínez (XRD, TEM), E. T. Romero-Guzman, and H. Hernández-Mendoza for the (ICP-SFMS) analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. García-Contreras.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Contreras, M.A., Fernández-Valverde, S.M. & Basurto-Sánchez, R. Investigation of oxygen reduction in alkaline media on electrocatalysts prepared by the mechanical alloying of Pt, Co, and Ni. J Appl Electrochem 45, 1101–1112 (2015). https://doi.org/10.1007/s10800-015-0870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0870-8

Keywords

Navigation