Skip to main content
Log in

Electrochemical activity towards ORR of mechanically alloyed PdCo supported on Vulcan carbon and carbon nanospheres

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A PdCo catalyst with an atomic ratio of 2:1 was synthesized from elemental powders by mechanical alloying. The structural characterization and composition of the catalyst were determined by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Both the electrocatalytic activity of the catalyst for oxygen reduction in acidic media, as well as attempts to support it on Vulcan XC-72 carbon powder and carbon nanospheres were evaluated by cyclic voltammetry, rotating disc electrode and rotating ring-disk electrode techniques. The X-ray diffraction studies indicated that an intermetallic PdCo compound with an average crystallite size of 25 nm was obtained. According to kinetic and thermodynamic parameters, the electrocatalytic activity of the catalyst toward oxygen reduction was determined as PdCo/CNS > PdCo/C with first-order kinetics, a four-electron multielectronic transference pathway, and a negligible amount of hydrogen peroxide produced. Activation energy values of 40 ± 1 kJ mol−1 and 68 ± 1 kJ mol−1 were determined for reactions with PdCo/CNS and PdCo/C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Gencoglu M (2009) Design of a PEM fuel cell system for residential application. Int J Hydrog Energy 34:5242–5248. doi:10.1016/j.ijhydene.2008.09.038

    Article  CAS  Google Scholar 

  2. Xu C, Zhang Y, Wang L, Xu L, Bian X, Ma H, Ding Y (2009) Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem Mater 21:3110–3116. doi:10.1021/cm900244g

    Article  CAS  Google Scholar 

  3. Lamy C (1984) Electrocatalytic oxidation of organic compounds on noble metals in aqueous solution. Electrochim Acta 29:1581–1588. doi:10.1016/0013-4686(84)85012-4

    Article  CAS  Google Scholar 

  4. Yang J, Lee J, Zhang Q, Zhou W, Liu Z (2008) Carbon-supported pseudo-core–shell Pd–Pt nanoparticles for ORR with and without methanol. J Electrochem Soc 155:B776–B781. doi:10.1149/1.2926609

    Article  CAS  Google Scholar 

  5. Martínez DC, Solorza O (2009) Synthesis and characterization of bimetallic PdM nanoparticles (M = Ag, Cu) oxygen reduction electrocatalysts. ECS Trans 20:275–280. doi:10.1149/1.3268395

    Article  Google Scholar 

  6. Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota K (2004) New palladium alloys catalyst for the oxygen reduction reaction in an acid media. Electrochem Commun 6:105–109. doi:10.1016/j.elecom.2003.10.020

    Article  CAS  Google Scholar 

  7. Fernández J, Walsh D, Bard A (2005) Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M: Pd, Ag, Au). J Am Chem Soc 127:357–365. doi:10.1021/ja0449729

    Article  Google Scholar 

  8. Schwarz R, Petrich R, Saw C (1985) The synthesis of amorphous Ni-Ti alloy powders by mechanical alloying. J Non-Cryst Solids 76:281–302. doi:10.1016/0022-3093(85)90005-5

    Article  CAS  Google Scholar 

  9. Baricco M, Battezati L, Enzo S, Soletta I, Cocco G (1993) X-Ray absortion spectroscopy and diffraction study of miscible and immiscible binary metallic systems prepared by ball milling. Spectrochim Acta A 49:1331–1334. doi:10.1016/0584-8539(93)80041-8

    Article  Google Scholar 

  10. Mora JM, Reza C, Diaz Barriga L, Zarazua L, Estrada M (2013) Synthesis and characterization of carbon nanospheres obtained by microwave radiation. Carbon 54:168–174. doi:10.1016/j.carbon.2012.11.016

    Article  Google Scholar 

  11. Yang H, Wang W, Zheng D (2007) Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J Power Sources 167:243–249. doi:10.1016/j.jpowsour.2007.02.013

    Article  Google Scholar 

  12. Liu L, Casadio S, Nannetti C (1995) Formation of the intermetallic compound VSi2 and a VSi2-SiC composite by mechanical alloying. J Alloys Compd 227:76–81. doi:10.1016/0925-8388(95)01626-0

    Article  CAS  Google Scholar 

  13. Burton A, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117:75–90. doi:10.1016/j.micromeso.2008.06.010

    Article  CAS  Google Scholar 

  14. Rahul R, Singh RK, Neergat M (2014) Effect of oxidative heat-treatment on eletrochemical properties and oxygen reduction reaction (ORR) activity of Pd-Co alloy catalysts. J Electroanal Chem 712:223–229. doi:10.1016/j.jelechem.2013.11.011

    Article  CAS  Google Scholar 

  15. Tang Q, Jiang L, Jiang Q, Wang S, Sun G (2012) Enhanced activity and stability of a Au decorated Pt/PdCo/C electrocatalyst toward oxygen reduction reaction. Electrochim Acta 77:104–110. doi:10.1016/j.electacta.2012.05.081

    Article  CAS  Google Scholar 

  16. Wang D, Xin H, Wang H, Yu Y, Rus E, Muller D, Disalvo F, Abruña H (2012) Facile Synthesis of Carbon-Supported Pd − Co Core − Shell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration. Chem Mater 24:2274–2281. doi:10.1021/cm203863d

    Article  CAS  Google Scholar 

  17. Mustain W, Prakash J (2007) Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt-palladium electrocatalysts in acid media. J Power Sources 170:28–37. doi:10.1016/j.jpowsour.2007.04.005

    Article  CAS  Google Scholar 

  18. Rak Lee K, Ihl Woo S (2014) Promoting effect of Ni on PdCo alloy supported on carbon for electrochemical oxygen reduction reaction. Catal Today 232:171–174. doi:10.1016/j.cattod.2013.10.010

    Article  Google Scholar 

  19. Yu-Chen W, Chen-Wei L, Yu-Wei C, Chien-Ming L, Pau-Yee L, Li-Duan T, Kuan-Wen W (2010) The structure-activity relationship of Pd-Co/C electrocatalysts for oxygen reduction reaction. Int J Hydrog Energy 35:1864–1871. doi:10.1016/j.ijhydene.2009.11.101

    Article  Google Scholar 

  20. Alvarez G, Mamlouk M, Scott K (2011) An investigation of palladium oxygen reduction catalysts for the direct methanol fuel cell. Int J Electrochem 2011:1–12. doi:10.4061/2011/684535

    Article  Google Scholar 

  21. Luo Y, Habrioux A, Calvillo L, Granozzi G, Alonso-Vante N (2014) Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction. ChemPhysChem 15(10):2136–2144. doi:10.1002/cphc.201400042

    Article  CAS  Google Scholar 

  22. Salvador J, Citalán S, Solorza O (2007) Kinetics of oxygen reduction reaction on nanosized Pd electrocatalyst in acid media. J Power Sources 172:229–234. doi:10.1016/j.jpowsour.2007.05.093

    Article  Google Scholar 

  23. Liu Y, Ishihara A, Mitsushima S, Kamiya N, Ota K (2005) Zirconium oxide for PEFC cathodes. Electrochem Solid-State Lett 8:A400–A402. doi:10.1149/1.1943550

    Article  CAS  Google Scholar 

  24. Liu G, Zhang H, Wang M, Zhong H, Chen J (2007) Preparation, characterization of ZrOxNy/C and its application in PEMFC as an electrocatalyst for oxygen reduction. J Power Sources 172:503–510. doi:10.1016/j.jpowsour.2007.07.067

    Article  CAS  Google Scholar 

  25. González RG, Leyva M, Solorza O (2004) Estudio comparativo de la reducción electrocatalítica de oxígeno sobre rutenio y su desempeño en una celda de combustible con membrana polimérica. Rev Soc Quím Méx 48:1–6

    Google Scholar 

  26. Feng Y, Alonso-Vante N (2012) Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium. Electrochim Acta 72:129–133. doi:10.1016/j.electacta.2012.04.003

    Article  CAS  Google Scholar 

  27. Ezeta A, Arce E, Solorza O, González RG, Dorantes H (2009) Effect of the leaching of Ru-Se-Fe and Ru-Mo-Fe obtained by mechanical alloying on electrocatalytical behavior for the oxygen reduction reaction. J Alloys Compd 483:429–431. doi:10.1016/j,jallcom.2008.08.115

    Article  CAS  Google Scholar 

  28. Shumin H, Zhong Z, Yuan L, Tianfu J, Xiaotie W (2005) The effect of vacuum evaporation plating on phase structure and electrochemical properties of AB5–5mass% LaMg3 composite alloy. Electrochim Acta 50:5491–5495

    Article  Google Scholar 

  29. Anastasijevic N, Vesovic V, Adzic R (1987) Determination of the kinetics parameters of the oxygen reduction reaction using the rotating-disk electrode. J Electroanal Chem 229:305–316. doi:10.1016/j.bbr.2011.03.031

    Article  CAS  Google Scholar 

  30. Couteanceau C, Crouigneau P, Lêger J-M, Lamy C (1994) Mechanism of oxygen electroreduction at polypyrrole electrodes modified by cobalt phthalocyanine. J Electroanal Chem 379:389–397. doi:10.1016/0022-0728(94)87162-0

    Article  Google Scholar 

  31. Damjanovic A, Sepa DB, Vojnovic VM (1986) Invariance with pH oh enthalpies of activation for O2 reduction at Pt electrodes in acid solutions. Electrochim Acta 31:1105–1111

    Article  Google Scholar 

  32. Kim I, Bong S, Woo S, Kumar R, Kim H (2011) Highly active 40 wt% PtRu/C anode electrocatalysts for PEMFCs prepared by an improved impregnation method. Int J Hydrog Energy 36:1803–1812. doi:10.1016/j.ijhydene.2010.04.049

    Article  CAS  Google Scholar 

  33. Leontyev I, Belenov S, Guterman V, Haghi-Ashtiani P, Shaganov AP, Dkhil B (2011) Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial. J Phys Chem C 115:5429–5434. doi:10.1021/jp1109477

    Article  CAS  Google Scholar 

  34. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2009) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction reaction catalysts for PEMFCs. Appl Catal B: Environ 56:9–35. doi:10.1016/j.apcatb.2004.06.021

    Article  Google Scholar 

  35. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66. doi:10.1038/nature05118

    Article  CAS  Google Scholar 

  36. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  37. Ren-Bin L, Shin-Min S, Jian-Lin L (2011) Mass transfer effects on kinetics of the hydrogen oxidation reaction at Nafion film covered Pt/C rotating disk electrodes. Catal Today 174:2–9. doi:10.1016/j.cattod.2011.04.037

    Article  Google Scholar 

  38. Suárez K, Solorza O (2009) Comparative study of oxygen reduction reaction on RuxMySe (M = Cr, Mo, W) electrocatalyst for polymer exchange membrane fuel cell. J Power Sources 192:165–169. doi:10.1016/j.jpowsour.2008.10.118

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by Consejo Nacional de Ciencia y Tecnología CONACYT-CNPq 174247, Instituto de Ciencia y Tecnología del Distrito Federal ICyTDF 325/2011, Secretaria de Investigación y Posgrado SIP-IPN 20130138 projects and Programa Institucional de Formación de Investigadores PIFI-IPN, Sistema Nacional de Investigadores SNI and CONACYT scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Arce-Estrada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora-Hernández, J.M., Ezeta-Mejía, A., Reza-San Germán, C. et al. Electrochemical activity towards ORR of mechanically alloyed PdCo supported on Vulcan carbon and carbon nanospheres. J Appl Electrochem 44, 1307–1315 (2014). https://doi.org/10.1007/s10800-014-0749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0749-0

Keywords

Navigation