Skip to main content
Log in

CFD evaluation of internal manifold effects on mass transport distribution in a laboratory filter-press flow cell

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The internal manifold geometry strongly influences the flow distribution inside an electrochemical reactor. The mass transport coefficient is a function of the flow pattern and is a key parameter in successful electrochemical reactor design and scale-up. In this work, a commercial computational flow dynamics (CFD) package was used to describe the flow pattern in the FM01-LC reactor at controlled volumetric flow rates (corresponding to mean linear flow velocities past the electrode surface between 0.024 and 0.11 m s−1). Numerical Re numbers were obtained for each local flow velocity at different positions in the reactor channel. From a known mass transport correlation (based on dimensionless groups, i.e. Sh, Re, Sc), numerical k m values were obtained (in the range 200 < Re < 1,000) at different positions in the reactor channel. Computed k m numbers are compared against experimental values. This computational approach could be useful in reactor design or selection since it facilitates a fast, preliminary reactor flow and mass transport characterisation without experimental electrochemical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

A :

Active electrode area, m2

A hole :

Cross-sectional area of an individual hole in Eq. (12), m2

B :

Channel width, m

D :

Diffusion coefficient of cupric ions, m2 s−1

D e :

Cell equivalent diameter in Eq. (8), m

a, b, c, e :

Empirical constant in Eqs. (1), (2), (18)–(22), dimensionless

c:

Concentration of electroactive species i in the bulk electrolyte, mol m−3

d e :

Equivalent hydraulic diameter of the rectangular flow channel, dimensionless

F :

Faraday constant, 96,485 C mol−1

I L :

Local limiting current, A

i, j :

Counters in Eqs. (13)–(17), dimensionless

k m :

Local mass transport coefficient, m s−1

k numerical :

Mass transport coefficient values predicted by CFD model, Eq. (25), m s−1

k exp :

Experimental values of mass transport coefficient, Eq. (25), m s−1

L :

Electrode length, m

N i :

Flux of electroactive species i, mol m−2 s−1)

n h :

Number of holes per row in Eq. (11), dimensionless

n r :

Number of rows in the flow distribution manifold in Eq. (11), dimensionless

p :

Pressure in Eq. (14), Pa

R :

Molar gas constant, J K−1 mol−1

s :

Cross-sectional area of the flow inlet in Eq. (9), m2

S :

Cross-sectional area of the cell in Eq. (9), m2

T :

Temperature, K

v :

Local mean linear flow velocity predicted by CFD, m s−1

\( \bar{v} \) :

The characteristic linear flow velocity, the ratio of mean volumetric flow rate to the cross-sectional area of the electrolyte channel, m s−1

x, y, z :

Natural coordinate axes, –

z i :

Charge of species i, dimensionless

γ :

Aspect ratio in Eq. (10), dimensionless

ρ N :

Nernst diffusion layer thickness, m

ρ :

Electrolyte density, kg m−3

μ :

Dynamic electrolyte viscosity, kg m−1 s−1

τ :

Viscous stress term, N

Re :

Reynolds number, dimensionless

Sc :

Schmidt number, dimensionless

Sh :

Sherwood number, dimensionless

λ :

Constant describing the geometrical arrangement of holes in the flow distributor in Eq. (11), dimensionless

\( \xi \) :

Ratio of whole area of the electrode channel to the manifold cross-sectional area in Eq. (12), dimensionless

References

  1. Goodridge F, Scott K (1995) Electrochemical process engineering. A guide to the design of electrolytic plant. Plenum Press, New York

    Google Scholar 

  2. Hammond JK, Robinson D, Brown CJ, Pletcher D, Walsh FC (1991) Mass transport studies in filterpress monopolar (FM-type) electrolysers. II-Laboratory studies in the FM01-LC reactor. In: Kreysa G (ed) Electrochemical cell design and optimization procedures. Dechema monographs, vol 123. Wiley-VCH, Weinheim, pp 299–315

    Google Scholar 

  3. Walsh FC (1993) A first course in electrochemical engineering. The Electrochemical Consultancy, Romsey

    Google Scholar 

  4. Pletcher D, Walsh FC (1993) Industrial electrochemistry. Blackies, London

    Book  Google Scholar 

  5. Wendt H, Kreysa G (1999) Electrochemical engineering, science and technology in chemical and other industries. Springer Verlag, Berlin

    Google Scholar 

  6. Ponce de León C, Reade GW, Whyte I, Male SE, Walsh FC (2007) Characterization of the reaction environment in a filter-press redox flow reactor. Electrochim Acta 52:5815–5823

    Article  Google Scholar 

  7. Frías-Ferrer A, González-García L, Sáez V, Ponce de León C, Walsh FC (2008) The effects of manifold flow on mass transport in electrochemical filter-press reactors. AIChE J 54:811–823

    Article  Google Scholar 

  8. Pickett DJ (1979) Electrochemical reactor design. Elsevier, Amsterdam

    Google Scholar 

  9. Hammond JK, Robinson D, Walsh FC (1991) Mass transport studies in filterpress monopolar (FM-type) electrolysers. I-Pilot scale studies in the FM21-SP reactor. In: Kreysa G (ed) Electrochemical cell design and optimization procedures. Dechema monographs, vol 123. Wiley-VCH, Weinheim, pp 279–297

    Google Scholar 

  10. Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D (1992) Local mass transport effects in the FM01 laboratory electrolyser. J Appl Electrochem 22:613–618

    Article  CAS  Google Scholar 

  11. Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D (1993) Studies of space-averaged mass transport in the FM01-LC laboratory electrolyser. J Appl Electrochem 23:38–43

    Article  CAS  Google Scholar 

  12. Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D (1994) Studies of three-dimensional electrodes in the FM01-LC laboratory electrolyser. J Appl Electrochem 24:95–106

    Article  CAS  Google Scholar 

  13. Brown CJ, Walsh FC, Pletcher D (1995) Mass transfer and pressure drop in a laboratory filterpress electrolyser. Chem Eng Res Des 73a:196–205

    Google Scholar 

  14. Trinidad P, Walsh FC (1996) Hydrodynamic behaviour of the FM0-LC reactor. Electrochim Acta 4:493–502

    Article  Google Scholar 

  15. Griffiths M, Ponce de León C, Walsh FC (2005) Mass transport in the rectangular channel of a filter-press electrolyzer (the FM0-LC Reactor). AIChE J 51:682–687

    Article  CAS  Google Scholar 

  16. Trinidad P, Ponce de León C, Walsh FC (2006) The application of flow dispersion models to the FM01-LC laboratory filter-press reactor. Electrochim Acta 52:604–613

    Article  CAS  Google Scholar 

  17. Vázquez L, Alvarez-Gallegos A, Sierra FZ, Ponce de León C, Walsh FC (2010) Simulation of velocity profiles in a laboratory electrolyser using computational fluid dynamics. Electrochim Acta 55:3437–3445

    Article  Google Scholar 

  18. Vázquez L, Alvarez-Gallegos A, Sierra FZ, Ponce de León C, Walsh FC (2010) Prediction of mass transport profiles in a laboratory filter-press electrolyser by computational fluid dynamics modelling. Electrochim Acta 55:3446–3453

    Article  Google Scholar 

  19. Walsh FC, Robinson D (1998) Electrochemical filter-press reactors. Interface 7:40–45 published by The Electrochemical Society, Inc

    CAS  Google Scholar 

  20. Pickett DJ, Wilson CJ (1982) Mass transfer in a parallel plate electrochemical cell-the effect of change of flow cross-section at the cell inlet. Electrochim Acta 27:591–594

    Article  CAS  Google Scholar 

  21. Janna WS (1998) Internal incompressible viscous flow. In: Johnson RW (ed) The handbook of fluid dynamics. Springer-Verlag, Heidelberg

    Google Scholar 

  22. Levenspiel O (1972) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  23. Shah YT, Stiegel GJ, Sharma U (1978) Backmixing in gas-liquid reactors. AIChE J 24:369–400

    Article  CAS  Google Scholar 

  24. Riemer M, Kristensen G, Harremoes HP (1980) Residence time distribution in submerged biofilters. Water Res 14:949–958

    Article  Google Scholar 

  25. Jimenez B, Noyola A, Capdeville B, Roustan M, Faup G (1988) Dextran blue colorant as a reliable tracer in submerged filters. Water Res 22:1253–1257

    Article  CAS  Google Scholar 

  26. Jimenez B, Noyola A, Capdeville B (1988) Selected dyes for residence time distribution evaluation in bioreactors. Biotechnol Tech 2:77–82

    Article  CAS  Google Scholar 

  27. Krall KM, Sparrow EM (1966) Turbulent heat transfer in the separated, reattached, and redevelopment regions of a circular tube. J Heat Transf 88:131–138

    Article  CAS  Google Scholar 

  28. Filetti EG, Kays WM (1967) Discussion: heat transfer in separated, reattached, and redevelopment regions behind a double step at entrance to a flat duct. J Heat Transf 89:163–167

    Article  CAS  Google Scholar 

  29. Zemanick PP, Dougall RS (1970) Local heat transfer downstream of abrupt circular channel expansion. J Heat Transf 92:53–59

    Article  Google Scholar 

  30. Baughn JW, Hoffman NA, Takahashi NA, Launder BE (1984) Local heat transfer downstream of an abrupt expansion in a circular channel with constant wall heat flux. J Heat Transf 106:789–796

    Article  Google Scholar 

  31. Runchal AK (1971) Mass transfer investigation in turbulent flow downstreams of sudden enlargement of a circular pipe for very high Schmidt numbers. Int J Heat Mass Transf 14:781–792

    Article  CAS  Google Scholar 

  32. Tagg DJ, Patrick MA, Wragg AA (1979) Heat and mass transfer downstream of abrupt nozzle expansions in turbulent flow. Trans Inst Chem Eng 57:176–181

    CAS  Google Scholar 

  33. Wragg AA, Tagg DJ, Patrick MA (1980) Diffusion-controlled current distributions near cell entries and corners. J Appl Electrochem 10:43–47

    Article  CAS  Google Scholar 

  34. Rizk TY, Thompson GE, Dawson JL (1996) Mass transfer enhancement associated with sudden flow expansion. Corros Sci 38:1801–1814

    Article  CAS  Google Scholar 

  35. Djati A, Brahimi M, Legrand J, Saidani B (2001) Entrance effect on mass transfer in a parallel plate electrochemical reactor. J Appl Electrochem 31:833–837

    Article  CAS  Google Scholar 

  36. Pellerin E, Michelistsch E, Darcovich K, Lin S, Tam CM (1995) Turbulent transport in membrane modules by CFD simulation in two dimensions. J Memb Sci 100:139–153

    Article  CAS  Google Scholar 

  37. Karniadakis GE, Mikic BB, Patera AT (1988) Minimum-dissipation transport enhancement by flow destabilization: Reynolds’ analogy revisited. J Fluid Mech 192:365–391

    Article  CAS  Google Scholar 

  38. Cao Z, Wiley DE, Fane AG (2001) CFD Simulation of net-type turbulence promoters in a narrow channel. J Memb Sci 185:157–176

    Article  CAS  Google Scholar 

  39. Ahmad LA, Lau KK, Abu Bakar MZ, Abd Shukor SR (2005) Integrated CFD simulation of concentration polarization in narrow membrane channel. Comput Chem Eng 29:2087–2095

    Article  CAS  Google Scholar 

  40. Vivek V, Ranade W, Kumar AJ (2006) Fluid dynamics of spacer filled rectangular and curvilinear channels. Memb Sci 271:1–15

    Article  Google Scholar 

  41. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics. Pearson Prentice Hall, Essex

    Google Scholar 

  42. Fluent in User’s Guide (2003) Fluent Inc., Lebanon

  43. Angioletti M, Di Tommaso RM, Nino E, Ruocco G (2003) Simultaneous visualization of flow field and evaluation of local heat transfer by tranitional impinging jets. Int J Heat Mass Trans 46:1703–1713

    Article  CAS  Google Scholar 

  44. Klemm T, Gabi M (2003) Using PIV and CFD to investigate the effect of casing design on cross flow fan performance. In: Proceedings of PSFVIP-4 (F4013), Chamonix, France, 3–5 June 2003

  45. Bard AJ, Faulkner LR (1980) Electrochemical methods. Fundamentals and applications. Willey, New York

    Google Scholar 

  46. Goodridge F, Mamoor GM, Plimley RE (1986) Mass transfer rates in baffled electrolytic cells. I Chem E Symp Ser 98:61–68

    Google Scholar 

  47. Rabinovich S (1995) Measurement errors, theory and practice. AIP Press, New York

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of our colleague Dr José Gonzalez-Garcia (1963–2012) of the University of Alicante; we have valued his colleagueship and electrochemical engineering contributions to mass transport and fluid flow characterisation of filter-press reactions over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alvarez-Gallegos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez, L., Alvarez-Gallegos, A., Sierra, F.Z. et al. CFD evaluation of internal manifold effects on mass transport distribution in a laboratory filter-press flow cell. J Appl Electrochem 43, 453–465 (2013). https://doi.org/10.1007/s10800-013-0530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0530-9

Keywords

Navigation