Skip to main content

Advertisement

Log in

The use of a rotating cylinder electrode to selective recover palladium from acid solutions used to manufacture automotive catalytic converters

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The reduction of palladium, rhodium and neodymium ions at concentrations of 0.94, 0.97 and 0.69 mol dm−3, respectively was studied in 1 mol dm−3 HNO3 or 1 mol dm−3 HCl, at a stainless steel and a vitreous carbon electrode, at 25 °C. At a vitreous carbon electrode in a solution containing rhodium and palladium ions in 1 mol dm−3 HCl electrolyte, the reduction of metal ions occurred at a similar potential to the formation of hydrogen gas, which impeded the selective separation of the two metals. At a stainless steel cathode in 1 mol dm−3 HNO3, palladium deposition occurred at a potential ≈0.35 V less negative than that of rhodium allowing the selective recovery of palladium. Neodymium ions were not electroactive in acidic chloride or nitrate media at pH 0. Using a solution obtained from a catalytic converter manufacturer containing palladium, rhodium and neodymium ions in 1 mol dm−3 HNO3, palladium ions were preferentially removed at 0.15 V versus SHE at an average cumulative current efficiency of 57%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vigneron S, Deprelle P, Hermia J (1996) Catal Today 27:229

    Article  CAS  Google Scholar 

  2. Wyatt M, Leach GM, Gould AS (1985) US Patent 4,500,650, 19 Feb 1985

  3. Chen J, Huang K (2006) Hydrometallurgy 82:164

    Article  CAS  Google Scholar 

  4. Hubicki Z, Leszczynska M, Lodyga B, Lodyga A (2006) Miner Eng 19:1341

    Article  CAS  Google Scholar 

  5. Angelidis TN (2001) Top Catal 16/17:419

    Article  CAS  Google Scholar 

  6. Barakat MA, Mahmoud MHH, Mahrous YS (2006) Appl Catal A Gen 301:182

    Article  CAS  Google Scholar 

  7. Troupis A, Hiskia A, Papaconstantinou E (2004) Appl Catal B Environ 52:41

    Article  CAS  Google Scholar 

  8. Iwao S, El-Fatah SA, Furukawa K, Seki T, Sasaki M, Goto M (2007) J Supercrit Fluid 42:200

    Article  CAS  Google Scholar 

  9. Mack C, Wilhelmi B, Duncan JR, Burgess JE (2007) Biotechnol Adv 25:264

    Article  CAS  Google Scholar 

  10. García-Gabaldon M, Pérez-Herranz V, García-Antón J, Guiñon JL (2005) Sep Purif Technol 45:143

    Google Scholar 

  11. Walsh FC, Gabe DR (1981) J Chem Technol Biotechnol 12:25

    CAS  Google Scholar 

  12. Alvarez AE, Salinas DR (2005) In: Proceedings of the 2nd Mercosur Congress on Chemical Engineering and 4th Mercosur Congress on Process Systems Engineering. Rio de Janeiro, Brasil, pp 1–10

  13. Pandelov S, Stimming U (2007) Electrochim Acta 52:5548

    Article  CAS  Google Scholar 

  14. Llorca MJ, Feliu JM, Aldaz A, Clavilier J (1993) J Electroanal Chem 351:299

    Article  CAS  Google Scholar 

  15. Santinacci L, Djenizian T, Hildebrand H, Ecoffey S, Mokdad H, Campanella T, Schmuki P (2003) Electrochim Acta 48:3123

    Article  CAS  Google Scholar 

  16. Zuo Y, Tang J, Fan C, Tang Y, Xiong J (2008) Thin Solid Films 516:7565

    Article  CAS  Google Scholar 

  17. Rao CRK, Trivedi DC (2005) Coord Chem Rev 249:613

    Article  CAS  Google Scholar 

  18. Camacho Frias E, Pitsch HK, Ly J, Poitrenaud C (1995) Talanta 42:1675–1683

    Article  Google Scholar 

  19. Low CTJ, Ponce de León C, Walsh FC (2005) Aust J Chem 58:246

    Article  CAS  Google Scholar 

  20. Walsh FC (1992) In: Genders JD, Weinberg NL (eds) Electrochemical technology for a cleaner environment, Chapter 5. The Electrosynthesis Company Inc., Lancaster, NY

  21. Gimeno Y, Hernández Creus A, Carro P, González S, Salvarezza RC, Arvia AJ (2002) J Phys Chem B 106:4232

    Article  CAS  Google Scholar 

  22. Lubert KH, Guttmann M, Beyer L, Kalcher K (2001) Electrochem Commun 3:102

    Article  CAS  Google Scholar 

  23. Benguerel E, Demopoulos GP, Harris GB (1996) Hydrometallurgy 40:135

    Article  CAS  Google Scholar 

  24. Brylev O, Sarrazin M, Bélanger D, Roué L (2006) Appl Catal B Environ 64:243

    Article  CAS  Google Scholar 

  25. Varentsov VK, Varentsova VI (2003) Russ J Electrochem 39:703

    Article  CAS  Google Scholar 

  26. Belyaev AV, Fedotov MA, Khranenko SP, Emel’yanov VA (2001) Russ J Coord Chem 27:855

    Article  CAS  Google Scholar 

  27. Smith RM, Martell AR (1976) Critical stability constants. Plenum, New York

    Google Scholar 

  28. Stefanidaki E, Hasiotis C, Kontoyannis C (2001) Electrochim Acta 46:2665

    Article  CAS  Google Scholar 

  29. Pletcher D, Urbina RI (1997) J Electroanal Chem 421:137

    Article  CAS  Google Scholar 

  30. Jaksic MM, Johansen B, Tunold R (1993) Int J Hydrog Energy 18:111

    Article  CAS  Google Scholar 

  31. Jayakumar M, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2009) Electrochim Acta 54:1083

    Article  CAS  Google Scholar 

  32. Walsh FC (1995) A first course in electrochemical engineering. The Electrochemical Consultancy, Romsey, UK

    Google Scholar 

  33. Walsh FC (1992) Bull Electrochem 8:471

    CAS  Google Scholar 

  34. Walsh FC (1992) Electrochim Acta 38:465

    Article  Google Scholar 

  35. Jayakumar M, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2009) J Appl Electrochem 39:1955

    Article  CAS  Google Scholar 

  36. Rivera FF, González I, Nava JL (2008) Environ Technol 29:817

    Article  CAS  Google Scholar 

  37. Grau JM, Bisang JM (2001) J Chem Technol Biotechnol 76:161

    Article  CAS  Google Scholar 

  38. Walsh FC (2001) Pure Appl Chem 73:1819

    Article  CAS  Google Scholar 

  39. Alonso AR, Lapidus GT, González I (2008) Hydrometallurgy 92:115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.E. Terrazas-Rodríguez is grateful to CONACYT for his PhD scholarship, 181828. The authors are grateful to K. Wróbel, L.A. García and O. Fermín for ICP-MS, SEM analysis and contribution to the experimental work, respectively. D. Rojas provided the industrial samples via the project FOMIX GTO-2007-C02-69453, CONACYT-Guanajuato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Alatorre-Ordaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrazas-Rodríguez, J.E., Gutiérrez-Granados, S., Alatorre-Ordaz, M.A. et al. The use of a rotating cylinder electrode to selective recover palladium from acid solutions used to manufacture automotive catalytic converters. J Appl Electrochem 41, 89–97 (2011). https://doi.org/10.1007/s10800-010-0212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0212-9

Keywords

Navigation