Skip to main content
Log in

Adsorption and corrosion inhibition of amphiphilic compounds on steel pipeline grade API 5L X52 in sulphuric acid 1 M

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of seven amphiphilic compounds, on steel API 5L X52 corrosion in sulphuric acid 1 M solution was studied by potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization curves indicated that these compounds acted mainly as cathodic type inhibitors. The EIS spectrums showed that the mechanism of corrosion inhibition is mainly a faradic process, the spectra were fitted with one electrical equivalent circuit (EEC) using a constant phase element (CPE). Double layer capacitance associated with CPE was also obtained. Langmuir, Temkin, and Henry adsorption isotherm described the experimental findings. This information suggested that organic molecules were adsorbed on active sites on metal surface avoiding contact of corrosive media with steel surface, having adsorbate molecules low molecular interaction between them even with the presence of more amphiphilic molecules on the steel surface as concentration got higher values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CI:

Corrosion inhibitor(s)

MetTImBr:

1-Methyl-3-tetradecylimidazolium bromide

MetHImBr:

1-Methyl-3-hexadecylimidazolium bromide

TPyBr:

N,N-Tetradecylpyridinium bromide

HPyBr:

N,N-hexadecylpyridinium bromide

DMetEtBAmBr:

N,N-Dimethyl-N-ethylbenzylammonium bromide

MetEtBAmLau:

N,N-Dimethyl-N-ethylbenzylammonium laurite

DMetEtBAmAc:

N,N-Dimethyl-N-ethylbenzylammonium acetate

Δ:

Conventional Heating

MW:

Microwaves

M.P.:

Melting Point

Rp:

Polarization resistance

MW:

Microwave

η:

Overpotential

j :

Current density

j a :

Anodic current density

j c :

Cathodic current density

E corr :

Corrosion potential

j corr :

Corrosion current density

R :

Constant of Gases

T :

Absolute Temperature

bc, ba:

Tafel Constants

C :

Concentration

θ:

Coverage degree

IE:

Corrosion inhibition efficiency

rds:

Rate-determining step

ΔG 0ads :

Adsorption free energy

K ads :

Equilibrium constant

f :

Molecular interaction constant

ECC:

Electrical equivalent circuit

CPE:

Constant phase element

Rs:

Solution resistance

Rct:

Charge transfer resistance

C dl :

Capacitance of the double layer

\( \phi \) :

Phase angle

\( \phi_{\max } \) :

Maximum value of phase angle in Bode Plot

ε0 :

Vacuum permittivity

εr :

Relative permittivity of dielectric

S:

Surface of dielectric media

e:

Thickness of dielectric media

CCPE :

Capacitance associated with the CPE

References

  1. Wojtanowicz AK (2008) In: Orszulik ST (ed) Environmental technology in the oil industry, Springer Science-Business Media B.V., London

  2. Koch GH, Brongers MPH et al (2002) FHWA-RD-01–156, Federal Highway Administration. U.S. Department of Transportation, Virginia

    Google Scholar 

  3. Verink ED Jr (2007) In: Cramer SD, Covino BS Jr (eds) ASM Handbook. ASM International, 13A, New York

  4. Koch GH, Brongers MPH et al. (2007) In: Cramer SD, Covino BS Jr (eds) ASM Handbook. ASM International, 13A, New York

  5. Galicia P, González I (2005) Electrochim Acta 50:4451

    Article  CAS  Google Scholar 

  6. Revie W, Uhlig HH (2008) Corrosion and corrosion control: an introduction to corrosion science and engineering. Wiley-Interscience, New York

    Google Scholar 

  7. Moiseeva LS, Yupashevskii VE et al (1998) Chem Petrol Eng 34:442

    Article  Google Scholar 

  8. Hackerman N, Snavely ES (1978) In: NACE basic corrosion course. NACE, Houston

  9. Natishan P (2007) In: Cramer SD, Covino BS Jr (eds) ASM Handbook. ASM International, 13B, New York

  10. Negm NA, Mohamed AS (2004) J Surf Deterg 7:23

    Article  CAS  Google Scholar 

  11. Müller B, Oughurlian C et al (2000) Corros Sci 42:577

    Article  Google Scholar 

  12. Free ML (2004) Corros Sci 46:3101

    Article  CAS  Google Scholar 

  13. Stark KR, Seddon A et al (2000) Pure Appl Chem 72:2275

    Article  Google Scholar 

  14. Glenn AG, Jones PB (2004) Tetrahedron Lett 45:6967

    Article  CAS  Google Scholar 

  15. Kadilkar BM, Rebeiro GL (2002) Org Proc Res Dev 6:826

    Article  Google Scholar 

  16. Deetlefs M, Seddon KR (2003) Green Chem 5:181

    Article  CAS  Google Scholar 

  17. Fraga-Dubreuil J, Famelart MH et al (2002) Org Proc Res Dev 6:374

    Article  CAS  Google Scholar 

  18. Law MC, Wong KY et al (2002) Green Chem 4:328

    Article  CAS  Google Scholar 

  19. Ahluwalia KL, Parashar RK (2005) Organic reactions mechanism. Alpha Science International Ltd, Delhi

    Google Scholar 

  20. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  21. Fredlake CP, Crosthwaite JM et al (2004) Chem Eng Data 49:954

    Article  CAS  Google Scholar 

  22. Fuchs-Godec R (2006) Colloid Surf A 280:130

    Article  CAS  Google Scholar 

  23. Branzoi V, Branzoi F et al (2000) Mater Chem Phys 35:288

    Article  Google Scholar 

  24. El-Maksoud SAA (2008) Int J Electrochem Sci 3:528

    Google Scholar 

  25. Migahed MA, Abd-El-Raouf AM et al (2006) J Appl Electrochem 36:395

    Article  CAS  Google Scholar 

  26. Migahed MA, Nassar IF (2008) Electrochim Acta 53:2877

    Article  CAS  Google Scholar 

  27. Wang L (2008) Corros Sci 48:608

    Article  Google Scholar 

  28. Keles H, Keles M et al (2008) Colloid Surf A 320:138

    Article  CAS  Google Scholar 

  29. Yana Y, Li W et al (2008) Electrochim Acta 53:5953

    Article  Google Scholar 

  30. Abd-El-Rehim SS, Amin MA et al (2008) Mater Chem Phys 112:898

    Article  CAS  Google Scholar 

  31. Khaleda KF, Al-Qahtanib MM (2009) Mater Chem Phys 113:150

    Article  Google Scholar 

  32. Mansfeld F (2005) Corros Sci 47:3178

    Article  CAS  Google Scholar 

  33. Konig U, Beier M et al. (1990) Proceedings of the 7th European Symposium on Corrosion Inhibitions 9, pp. 961

  34. Bockris JOM, Despic A et al (1961) Electrochim Acta 4:325

    Article  CAS  Google Scholar 

  35. Drazic DM (1989) In: Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry. Plenum Press, New York

    Google Scholar 

  36. Sherif ESM, El Shamya AM et al (2007) Mater Chem Phys 102:231

    Article  CAS  Google Scholar 

  37. Mansfeld F (2009) J Solid State Electrochem 13:515

    Article  CAS  Google Scholar 

  38. Migahed MA (2005) Prog Org Coat 54:91

    Article  CAS  Google Scholar 

  39. Jovancicevic V, Yang B et al (1998) J Electrochem Soc 135:94

    Article  Google Scholar 

  40. Anand RR, Hurd RM et al (1965) J Electrochem Soc 112:138

    Article  Google Scholar 

  41. Vermilyea DA (1971) Ann Rev Mater Sci 1:373

    Article  CAS  Google Scholar 

  42. Oguzie EE, Unaegbu C et al (2004) Mater Chem Phys 84:363

    Article  CAS  Google Scholar 

  43. Bellman C (2008) In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Berlin

    Google Scholar 

  44. Langmuir I (1932) J Am Chem Soc 54:2798

    Article  CAS  Google Scholar 

  45. Langmuir I (1918) J Am Chem Soc 40:1361

    Article  CAS  Google Scholar 

  46. Langmuir I (1916) J Am Chem Soc 38:2221

    Article  CAS  Google Scholar 

  47. Langmuir I (1917) J Am Chem Soc 39:1848

    Article  CAS  Google Scholar 

  48. Parsons R (1959) Trans Faraday Soc 55:999

    Article  CAS  Google Scholar 

  49. Tvardovski A, Tondeur D et al (2003) J Colloid Interface Sci 265:239

    Article  CAS  Google Scholar 

  50. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  51. Le Mehaute A, Crepy G (1983) Solid State Ionics 9:17

    Article  Google Scholar 

  52. Zhang L, Kappl M et al (2008) Prog Colloid Polym Sci 134:39

    CAS  Google Scholar 

  53. Yang CH (1993) J Phys Chem 97:7097

    Article  CAS  Google Scholar 

  54. López-Garzón FJ, Fernandez-Morales FJ et al (1987) Chromatography 23:97

    Article  Google Scholar 

  55. Yashkin SN, Schuster RH (2003) Russ Chem Bull Int Ed 52:2360

    Article  CAS  Google Scholar 

  56. Filippov LK, Silebi CA et al (1995) Langmuir 11:872

    Article  CAS  Google Scholar 

  57. Pajkossy T (2005) Solid State Ionics 176:1997

    Article  CAS  Google Scholar 

  58. Kerner Z, Pajkossy T (2000) Electrochim Acta 46:207

    Article  CAS  Google Scholar 

  59. Pajkossy T (1997) Solid State Ionics 94:123

    Article  CAS  Google Scholar 

  60. Epelboin I, Keddam M et al (1972) J Appl Electrochem 2:71

    Article  CAS  Google Scholar 

  61. Chechirlian S, Keddam M (1993) In: Scully JR, Silverman DC et al (eds) Electrochemical impedance: analysis and interpretation. ASTM, Fredericksburg

    Google Scholar 

  62. Kiel M, Bohlen O et al (2008) Electrochim Acta 35:7367

    Article  Google Scholar 

  63. Cole KS, Cole RH (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  64. Urquidi-Macdonald M, Real S et al (1990) Electrochim Acta 35:1559

    Article  CAS  Google Scholar 

  65. Kissi M, Bouklah M et al (2006) Appl Surf Sci 252:4190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.-B. Pérez-Navarrete would like to thank Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship awarded to carry out postgraduate studies and to N.V. Likhanova for assistance to carry out experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathán-Boanerge Pérez-Navarrete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Navarrete, JB., Olivares-Xometl, C.O. & Likhanova, N.V. Adsorption and corrosion inhibition of amphiphilic compounds on steel pipeline grade API 5L X52 in sulphuric acid 1 M. J Appl Electrochem 40, 1605–1617 (2010). https://doi.org/10.1007/s10800-010-0146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0146-2

Keywords

Navigation