Skip to main content
Log in

Influence of CTAB on the electrochemical behavior of dopamine and on its analytic determination in the presence of ascorbic acid

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This research work concerns the electrochemical study of dopamine and ascorbic acid in the presence of the cationic surfactant cetyltrimethylammonium bromide. From this study is possible to note that the cetyltrimethylammonium bromide greatest influence was on the dopamine, because it disfavors both its oxidation and reduction, thereby giving a smaller heterogeneous rate constant, k 0, value than in its absence, provoking that the process tends to irreversibility. On the contrary, for the ascorbic acid case, its oxidation was favored; these effects can influence the separation of the dopamine and ascorbic acid voltammetric signals up to 453 mV. Further, the method could be optimized through differential pulse voltammetry to proceed with the analytic determination of dopamine in the presence of ascorbic acid displaying usable analytic parameters, namely: a linearity range of 0–130 μM, a sensitivity of (6.318 ± 0.002) μA mM−1, a detection limit of (11 ± 0.1) μM, and a quantification limit of (37 ± 0.2) μM, which made it possible to effect the quantification on a commercial pharmaceutical sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. El Kommos ME, Mohamed FA, Khedr ASK (1990) J Assoc Anal Chem 73:516

    CAS  Google Scholar 

  2. Sorouraddin MH, Manzoori JL, Kargarzadeh E, Ají Shabani AM (1998) J Pharm Biomed Anal 18:877

    Article  CAS  Google Scholar 

  3. Stetter JR, Penrose WR, Yao S (2003) J Electrochem Soc 150:S11

    Article  CAS  Google Scholar 

  4. Venton BJ, Wightman RM (2003) Anal Chem 1:414A

    Google Scholar 

  5. Chen J, Cha CS (1999) J Electroanal Chem 463:93

    Article  CAS  Google Scholar 

  6. Dayton MA, Ewing AG, Wightman RM (1980) Anal Chem 52:2392

    Article  CAS  Google Scholar 

  7. Zhang Y, Cai Y, Su S (2006) Anal Biochem 350:285

    Article  CAS  Google Scholar 

  8. Yogeswaran U, Thiagarajan S, Chen SM (2007) Anal Biochem 365:122

    Article  CAS  Google Scholar 

  9. Yin T, Wei W, Zeng J (2006) Anal Bioanal Chem 386:2087

    Article  CAS  Google Scholar 

  10. Li J, Lin XQ (2007) Anal Chim Acta 596:222

    Article  CAS  Google Scholar 

  11. Yao H, Sun Y, Lin X, Tang Y, Liu A, Li G, Li W, Zhang S (2007) Anal Sci 23:667

    Article  Google Scholar 

  12. Jiang XH, Lin XQ (2005) Anal Chim Acta 537:145

    Article  CAS  Google Scholar 

  13. Chen SM, Peng KT (2003) J Electroanal Chem 547:179

    Article  CAS  Google Scholar 

  14. Gong JM, Lin XQ (2004) Electrochim Acta 49:4351

    Article  CAS  Google Scholar 

  15. Sánchez-Rivera AE, Vital-Vaquier V, Romero-Romo M, Ramírez-Silva MT, Palomar-Pardavé M (2004) J Electrochem Soc 151:C666

    Article  Google Scholar 

  16. Rusling JF (1991) Acc Chem Res 24:75

    Article  CAS  Google Scholar 

  17. Kaifer AE, Bard AJ (1985) J Phys Chem 89:4876

    Article  CAS  Google Scholar 

  18. Ouiatela DA, Diaz A, Kaifer AE (1988) Langmuir 4:663

    Article  Google Scholar 

  19. Davidovic A, Tabakovic I, Davidovic D, Duic L (1990) J Electroanal Chem 280:371

    Article  CAS  Google Scholar 

  20. Wen XL, Han ZX, Rieker A, Liu ZL (1997) J Chem Res (S) 3:108.

    Google Scholar 

  21. Wen XL, Han ZX, Rieker A, Liu ZL (1998) J Chem Soc Perkin Trans 2:905

    Google Scholar 

  22. Connors TF, Rusling JF, Owlia A (1985) Anal Chem 57:170

    Article  CAS  Google Scholar 

  23. Stadlober M, Kalcher K, Raber G, Neuhold C (1996) Talanta 43:1915

    Article  CAS  Google Scholar 

  24. Chen SM, Chzo WY (2006) J Electroanal Chem 587:226

    Article  CAS  Google Scholar 

  25. Wen XLW, Jia YH, Liu ZL (1999) Talanta 50:1027

    Article  CAS  Google Scholar 

  26. dos Reis AP, Tarley CRT, Maniasso N, Kubota LT (2005) Talanta 67:829

    Article  CAS  Google Scholar 

  27. Corona-Avendaño S, Alarcón-Angeles G, Ramírez-Silva MT, Rosquete-Pina G, Romero-Romo M, Palomar-Pardavé M (2007) J Electroanal Chem 609:17

    Article  Google Scholar 

  28. Alarcón-Angeles G, Corona-Avendaño S, Ramírez-Silva MT, Rojas-Hernández A, Romero-Romo M, Palomar-Pardavé M (2008) Electrochim Acta 53:3013

    Article  Google Scholar 

  29. Ramírez MT, Palomar ME, González I, Rojas-Hernández A (1995) Electroanal 7:184

    Article  Google Scholar 

  30. Martínez R, Ramírez MT, González I (1998) Electroanalysis 10:336

    Article  Google Scholar 

  31. Yu L, Lu T, Yu-Xia L, Liu J, Gui-Ying X (2005) Colloid Surf A 257:375

    Article  Google Scholar 

  32. Chen M, Li H (1998) Electroanalysis 10:477

    Article  CAS  Google Scholar 

  33. Zhang Y, Jin G, Wang Y, Yang Z (2003) Sensors 3:443

    Article  CAS  Google Scholar 

  34. Raj CR, Ohsaka T (2004) J Electroanal Chem 496:44

    Article  Google Scholar 

  35. Ciszewski A, Milczarek G (1999) Anal Chem 71:1055

    Article  CAS  Google Scholar 

  36. Raoof JB, Ojani R, Nadimi SR (2005) Electrochim Acta 50:4694

    Article  CAS  Google Scholar 

  37. Jin GP, Lin XQ, Gong JM (2004) J Electroanal Chem 569:135

    Article  CAS  Google Scholar 

  38. Zhang L, Sun YG (2001) Anal Sci 17:939

    Article  CAS  Google Scholar 

  39. Lin XQ, Zhang L (2001) Anal Lett 34:1585

    Article  CAS  Google Scholar 

  40. Zare HR, Rajabzadeh N, Nasirizadeh N, Ardakani MM (2006) J Electroanal Chem 589:60

    Article  CAS  Google Scholar 

  41. Shankaran DR, Lmura K, Kato T (2003) Sensor Actuat B 94:73

    Article  Google Scholar 

  42. Fang B, Zhang W, Kana X, Tao H, Denga X, Li M (2006) Sensor Actuat B 117:230

    Article  Google Scholar 

  43. Lin X, Zhang Y, Chen W, Wu P (2007) Sensor Actuat B 122:309

    Article  Google Scholar 

  44. Lin X, Zhuang Q, Chen J, Zhang S, Zheng Y (2007) Sensor Actuat B 125:240

    Article  Google Scholar 

  45. Deakin MR, Kovach PM, Stutts KJ, Wightman RM (1966) Anal Chem 58:1474

    Article  Google Scholar 

  46. Wang Q, Li N, Wang W (2002) Anal Sci 18:635

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Red ALFA II for the BioSenIntg Clave: II-0486-FCFA-FCD-FI Project. Also, SCA 58250 and GAA 105024 express their gratitude to CONACyT for their postdoctoral grants. MTRS thanks CONACyT for support through Project 82932 and SCA for Project 80305. Also SCA, MARR, MEPP, and MTRS gratefully thank the SNI for the distinction of their membership and the stipend received. SCA, MEPP, and MARR wish to thank the Departamento de Materiales, UAM-A, for the financial support given through Projects 2260220, 2260231, and 2260234.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Teresa Ramírez-Silva or Manuel Palomar-Pardavé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corona-Avendaño, S., Ramírez-Silva, M.T., Palomar-Pardavé, M. et al. Influence of CTAB on the electrochemical behavior of dopamine and on its analytic determination in the presence of ascorbic acid. J Appl Electrochem 40, 463–474 (2010). https://doi.org/10.1007/s10800-009-0017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-0017-x

Keywords

Navigation