Skip to main content
Log in

Analysis of the dynamics of Intergranular corrosion process of sensitised 304 stainless steel using recurrence plots

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study presents the assessment of the dynamics of intergranular corrosion of austenitic stainless steel with different degrees of sensitization through the analysis of electrochemical current noise signals. Samples of S30400 stainless steel were aged at 923 K for 50, 250 and 1,000 min before being quenched in water. The double Loop Electrochemical Potentiokinetic Reactivation test was applied to assess the degree of sensitization. The electrochemical noise data were analysed using a novel mathematical tool named Recurrence Plots (RP). This method allowed us to assess the dynamics of the intergranular corrosion process of the steel in a H2SO4 + KSCN solution at room temperature. The study was conducted using a recurrence quantification analysis (RQA) from which it was possible to determine the percent of recurrence (%R), the percent of determinism (%D) and the information Entropy of the corrosion process. It was found that these parameters increased with the sensitisation intensity, which indicates that sensitisation induced a more deterministic dynamics on the electrochemical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Lacombe P, Baroux B, Beranger G (1993) Stainless steels. Les editions de physique, France

    Google Scholar 

  2. Sedriks AJ (1996) Corrosion of stainless steels, 2nd edn. Wiley, USA

    Google Scholar 

  3. Marshall P (1984) Austenitic stainless steels, microstructure and mechanical properties. Elsevier, England

    Google Scholar 

  4. Terada M, Saiki M, Costa I, Fernando A (2006) J Nucl Mater 358:40

    Article  CAS  Google Scholar 

  5. Shaikh H, Sivaibharasi N, Sasi B, Anita T et al (2006) Corros Sci 48:1462

    Article  CAS  Google Scholar 

  6. Číhal V, Štefec R (2001) Electrochim Acta 46:3867

    Article  Google Scholar 

  7. Novak P, Štefec R, Franz F (1975) Corrosion 31:344

    CAS  Google Scholar 

  8. Standard G 108–94 (1994) Annual book of ASTM standards 1995. American Society for Testing and Materials, Philadelphia, PA, p 444

    Google Scholar 

  9. Majidi AP, Streicher MA (1984) Corrosion 40:584

    CAS  Google Scholar 

  10. Zaveri N, Sunb R, Zufelt N, Zhoua A, Chenb YQ (2007) Electrochim Acta 52:5795

    Article  CAS  Google Scholar 

  11. Cottis R, Turgoose S (1999) Electrochemical impedance and noise. NACE, Houston, TX

    Google Scholar 

  12. Gouveia-Caridade C, Pereira IM, Brett MA (2004) Electrochim Acta 49:785

    Article  CAS  Google Scholar 

  13. García-Ochoa E, Hernández MA, Rodríguez FJ, Genescá J, Boerio FJ (2003) Corrosion 59:50

    Google Scholar 

  14. Markworth AJ, Stringer J, Rollins RW (1995) MRS Bull 20:20

    CAS  Google Scholar 

  15. Li Z, Cai J, Zhou S (1997) J Electroanal Chem 432:111

    Article  CAS  Google Scholar 

  16. Karantonis A, Pagitsas M, Miyakita Y, Nakabaya S (2005) Electrochim Acta 50:5056

    Article  CAS  Google Scholar 

  17. Parmananda P, Rivera M, Green BJ, Hudson JL (2005) Appl Math Comput 164:467

    Article  Google Scholar 

  18. Zhai Y, Kiss IZ, Daido H, Hudson JL (2005) Physica D 205:57

    Article  Google Scholar 

  19. Eckmann JP, Kamphorst SO, Ruelle D (1987) Europhys Lett 4:973

    Article  Google Scholar 

  20. Casdagli MC (1997) Physica D 108:12

    Article  Google Scholar 

  21. Trulla LL, Giuliani A, Zbilut JP, Webber CL (1996) Phys Lett A 223:255

    Article  CAS  Google Scholar 

  22. Zbilut JP, Webber CL (1992) Phys Lett A 171:199

    Article  Google Scholar 

  23. McGuire G, Azar NB, Shelhamer M (1997) Phys Lett A 237:43

    Article  CAS  Google Scholar 

  24. Webber CL Jr, Zbilut JP (1994) J Appl Physiol 76965:973

    Google Scholar 

  25. Alvarez CJ, Almanza E, Murr LE (2005) J Mater Sci 40:2965

    Article  CAS  Google Scholar 

  26. Lima AS, Am Nascimento, Abreu HF, De Lima Neto P (2005) J Mater Sci 40:139

    Article  CAS  Google Scholar 

  27. Was GS, Rajan VB (1987) Corrosion 43:576

    CAS  Google Scholar 

  28. Acuña N, García-Ochoa E, González-Sánchez J (2008) Int J Fatigue 30:1211

    Article  CAS  Google Scholar 

  29. Amadou T, Braham C, Sidhom H (2004) Metall Mater Trans A 35A:3499

    Article  CAS  Google Scholar 

  30. Cottis R (2001) Corrosion 57:265

    Article  CAS  Google Scholar 

  31. Wu B, Scully JR, Hudson JL, Mikhailov AS (1997) J Electrochem Soc 144:1614

    Article  CAS  Google Scholar 

  32. Kiss I, Wang W, Hudson JL (2000) Phys Chem Chem Phys 2:3847

    Article  CAS  Google Scholar 

  33. Cazares-Ibáñez E, Vázquez-Coutiño GA, García-Ochoa E (2005) J Electroanal Chem 583:17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. David Greenfield (MERI, Sheffield Hallam University) for the revision and comments made to the manuscript and Dr. Tezozomoc Pérez for the facilities given at the Centro de Investigación en Corrosión.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. González-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Ochoa, E., González-Sánchez, J., Acuña, N. et al. Analysis of the dynamics of Intergranular corrosion process of sensitised 304 stainless steel using recurrence plots. J Appl Electrochem 39, 637–645 (2009). https://doi.org/10.1007/s10800-008-9702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9702-4

Keywords

Navigation