Skip to main content
Log in

A rotating ring–disk study of the initial stages of the anodic dissolution of chalcopyrite in acidic solutions

Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The initial stages of the dissolution of chalcopyrite have been studied using rotating ring–disk electrode techniques in dilute sulfuric acid solutions at 60 °C. It has been confirmed that the mineral undergoes a dissolution process under freely dissolving conditions in the absence of an oxidant. This process involves the formation of soluble copper(II) ions and a soluble sulfur species which is presumably H2S. By the use of an anodic stripping technique on the ring electrode, it has been possible to determine that the dissolution of chalcopyrite under oxidative conditions involves a soluble sulfur species such as thiosulfate. Collection efficiency measurements involving the detection of both iron(II) and copper(II) on the ring have been used to identify possible anodic reactions in the potential region relevant to the oxidative leaching of the mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Burkin A.R. (2001) Chemical Hydrometallurgy: Theory and Principles. Imperial College Press, London, (chapter 5), 327 pp

    Google Scholar 

  2. Munoz P.B., Miller J.D. and Wadsworth M.E. (1979) Metall. Trans. B 10:149

    Article  Google Scholar 

  3. Biegler T. and Swift D.A. (1979) J. Appl. Electrochem. 9:545

    Article  CAS  Google Scholar 

  4. Parker A.J., Paul R.L. and Power G.P. (1981) Australian Journal of Chemistry 34: 13

    Article  CAS  Google Scholar 

  5. Parker A.J., Paul R.L. and Power G.P. (1981) J. Electroanal. Chem. 118: 305

    CAS  Google Scholar 

  6. Biegler T. and Horne M.D. (1985) J. Electrochem. Soc. 132: 1363

    Article  CAS  Google Scholar 

  7. Warren G., Wadsworth M.E. and El-Raghy S.M. (1982) Metall. Trans. B 13: 571

    Article  Google Scholar 

  8. Hirato T., Majima H. and Awakura Y. (1987) Metall. Trans. B 18: 489

    Article  Google Scholar 

  9. Sand W., Gehrke T., Hallmann R. and Schippers A. (2001) Hydrometallurgy 59: 159

    Article  CAS  Google Scholar 

  10. Rohwerder T., Gehrke T., Kinzler K. and Sand W. (2003) Appl. Microbiol. Biotechnol. 63: 239

    Article  CAS  Google Scholar 

  11. M.J. Nicol and I. Lázaro, in P.A. Riveros, D.G. Dixon, D.B. Dreisinger and J.H. Menacho (Eds), Proceedings of the Copper-Cobre 2003 Conference, Santiago, Chile, 2003, p. 367

  12. Nicol M.J. (1975) Inst. Min. Metall., Trans., Sect. C 84: C206

    CAS  Google Scholar 

  13. Ammou-Chokroum M., Steinmetz D. and Malve A. (1978) Bull. Soc. Fr. Mineral. Cristallogr. (English translation) 101: 26

    CAS  Google Scholar 

  14. Holliday R.I. and Richmond W.R. (1990) J. Electroanal. Chem. 288: 83

    Article  CAS  Google Scholar 

  15. G.H. Kelsall and P.W. Page, in P.E. Richardson and R. Woods (Eds), Int. Symp. Electrochem. Miner. Met. Process (The Electrochem. Soc., 1984), p. 303

  16. Ichikuni M. (1960) Bull. Chem. Soc. Japan 33: 1052

    Article  CAS  Google Scholar 

  17. Albery W.J. and Hitchman M.L. (1971) Ring–Disc Electrodes. Oxford University Press, London (chapter 3)

    Google Scholar 

  18. D.L. Jones and E. Peters, in Int. Symp. Extr. Metall., 1976, p. 633

  19. M.J. Nicol, in K. Osseo-Asare and J.D. Miller (Eds), Hydrometallurgy: Research, Development and Plant Practice (The Metallurgical Society of AIME, Warrendale, PA, 1982), p. 177

  20. Nicol M.J. and Lázaro I. (2002) Hydrometallurgy 63: 15

    Article  CAS  Google Scholar 

  21. M.J. Nicol, C.R.S. Needes and N.P. Finkelstein, in A.R. Burkin (Ed), Leaching Reduction in Hydrometallurgy (Institution of Mining and Metallurgy, London, UK, 1975), pp. 1–11

  22. Brennet P., Jafferali S., Vanseveren J.M., Vereecken J. and Winand R. (1974) Trans. Metall. B 5: 127

    CAS  Google Scholar 

  23. Gerlach J. and Küzeci E. (1983) Hydrometallurgy 11: 345

    Article  CAS  Google Scholar 

  24. Koch D.F.A. and McIntyre R.J. (1976) J. Electroanal. Chem. 71: 285

    Article  CAS  Google Scholar 

  25. Loucka T. (1998) Coll. Czech. Chem. Comm. 63: 20

    Article  CAS  Google Scholar 

  26. Rabai G. and Epstein I.R. Inorg. (1992) Chem. 31: 3239

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge research funding provided by the A.J. Parker CRC for Hydrometallurgy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J. Nicol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazaro, I., Nicol, M. A rotating ring–disk study of the initial stages of the anodic dissolution of chalcopyrite in acidic solutions. J Appl Electrochem 36, 425–431 (2006). https://doi.org/10.1007/s10800-005-9089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9089-4

Keywords

Navigation