Skip to main content

Advertisement

Log in

Abstract

The model developed in the first part of this work is used to predict the cell potentials and the irreversible Gibbs free energy of a stack of 15 cells. The model starts from a phenomenological equation of a polarization curve with the extent of reaction as the independent variable. Two extreme kinds of flow of reagents, defined as Chain and Separate Flows respectively, are considered. The cell potentials are obtained by a combination of the potential of the two extreme cases of flow. The stack cell potentials and the efficiencies, estimated by the model, reproduce the general characteristics obtained by the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lutz A.E., Larson R.S., Keller J.(2002). Int. J. of Hydrogen Energy 27:1103

    Article  CAS  Google Scholar 

  2. Kazim A.(2004). Energy Conversion and Management 45: 1949

    Article  CAS  Google Scholar 

  3. Y.A. Cengel and M.A. Boles, ‘Thermodynamics – An Engineering Approach”, 2nd ed. (Mc Graw-Hill, Inc., 1994)

  4. Oosterkamp P.F., Goorse A.A., Blomen L.J.(1993). J. Power Sources 41: 239

    Article  Google Scholar 

  5. K. Kordesch and G. Simader, ‘Fuel Cells and Their Applications’, (VCH, 1996).

  6. E. Chen, in Gregor Hoogers (Ed), ‘Thermodynamics and Electrochemical Kinetics’, Fuel Cell Technology Handbook (CRC Press LLC, 2003) Ch. 3, pp. 3.1–3.30

  7. A. Weber, R. Darling, J. Meyers and J. Newman, ‘ Mass Transfer at Two-Phase and Three-Phase Interfaces’, Fundamentals and Survey of Systems, Handbook of Fuel Cells, Fundamental Technology and Applications, Vol. 1, Ch. 7 (Ed. Wiley, 2003), pp. 47–69

  8. Demin A.K., Tsiakaras P.E., Sobyanin V.A., Hramova S.Yu. (2002). Solid State Ionics 152–153: 55

    Google Scholar 

  9. Dante R.C., Lehmann J., Solorza-Feria O.(2005). J. Appl. Electrochem. 35/3: 327

    Article  CAS  Google Scholar 

  10. Bockris J., Srinivasan S.(1969). “Fuel Cells: Their Electrochemistry”. Mc Graw Hill, New York

    Google Scholar 

  11. Kim J., Lee S.M. and Srinivasan S.,Chamberlin C.E.(1995). J. Electrochem. Soc. 142: 2670

    Article  CAS  Google Scholar 

  12. Springer T.E., Rockward T.A., Zawodzinski T.A. and Gottesfeld S. (2001). Journal of the Electrochem. Soc. 148(1): A11

    Article  CAS  Google Scholar 

  13. Newman J. (1979). Electrochim. Acta 24: 223

    Article  CAS  Google Scholar 

  14. McQuarrie D.A. and Simon J.D.(1999). “Molecular Thermodynamics”. University Science Books, Sauzalito, California, USA,pp. 581–638

    Google Scholar 

Download references

Acknowledgments

The Deutscher Akademischer Austausch Dienst (German Academic Exchange Service), DAAD, supported the stay of Prof. R. Dante at the Fachhochschule Stralsund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ROBERTO C. DANTE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DANTE, R.C., MENZL, F., LEHMANN, J. et al. On efficiency of both single fuel cells and stacks II. J Appl Electrochem 36, 187–193 (2006). https://doi.org/10.1007/s10800-005-9051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9051-5

Keywords

Navigation