Skip to main content
Log in

Enhanced photocatalytic degradation of tetramethylammonium on silica-loaded titania

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Photocatalytic degradation (PCD) of tetramethylammonium (TMA) in water was studied using both pure TiO2 and silica-loaded TiO2 (Si–TiO2). Use of Si–TiO2 catalyst prepared from commercial TiO2 powder by a simple method developed in this work enhanced the PCD rate of TMA considerably. The Si/Ti atomic ratio of 18% was found to be an optimum in photoactivity and the calcined sample was more efficient than the uncalcined one. Several factors were noted to be responsible for the higher photoefficiency of Si–TiO2 catalyst. Si–TiO2 calcined at 700 °C did not show any sign of change in the crystalline structure from that of uncalcined pure TiO2. The increased thermal stability of Si–TiO2 enabled the bulk defects to be removed at high temperatures without forming the inactive rutile phase, which may partly contribute to the higher photoactivity. The most outstanding characteristics of Si–TiO2 is its surface charge modification. Loading silica on to a titania surface made the surface charge highly negative, which was confirmed by zeta potential measurements. The enhanced electrostatic attraction of cationic TMA onto the negatively charged Si–TiO2 surface seems to be the main reason for the enhanced photoactivity of Si–TiO2. As a result of this surface charge change, the TMA PCD rate with Si–TiO2 exhibited a maximum around pH 7 whereas the PCD with pure TiO2 was minimized at pH 7. The X-ray photoelectron spectroscopic analysis showed the formation of SiOx on the TiO2 surface but the diffuse reflectance UV spectra indicated no significant difference in the band gap transition between pure TiO2 and Si–TiO2. In addition, the diffuse reflectance IR spectra showed the presence of more surface OH groups on Si–TiO2 than on pure TiO2, which may also contribute to the higher photoactivity of Si–TiO2 through generating more OH radicals upon UV illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Kraeutler A.J. Bard (1978) J. Am. Chem. Soc 100 4317 Occurrence Handle1:CAS:528:DyaE1cXkvVSrtrs%3D

    CAS  Google Scholar 

  2. J. Lee H. Park W. Choi (2002) Environ. Sci. Technol 36 5462 Occurrence Handle1:CAS:528:DC%2BD38XosVKksLY%3D

    CAS  Google Scholar 

  3. S. Kim W. Choi (2002) J. Phys. Chem. B 106 13311 Occurrence Handle1:CAS:528:DC%2BD38XptFOhu74%3D

    CAS  Google Scholar 

  4. W. Choi J. Lee S. Kim S. Hwang M.C. Lee T.K. Lee (2003) J. Ind. Eng. Chem 9 96 Occurrence Handle1:CAS:528:DC%2BD3sXptVGjtA%3D%3D

    CAS  Google Scholar 

  5. X. Fu L.A. Clark Q. Yang M.A. Anderson (1996) Environ. Sci. Technol 30 647 Occurrence Handle1:CAS:528:DyaK28XhtFWnsQ%3D%3D

    CAS  Google Scholar 

  6. C. Anderson A.J. Bard (1995) J. Phys. Chem 99 9882 Occurrence Handle1:CAS:528:DyaK2MXlvFWksbY%3D

    CAS  Google Scholar 

  7. C. Anderson A.J. Bard (1997) J. Phys. Chem 101 2611 Occurrence Handle1:CAS:528:DyaK2sXjtVehtr4%3D

    CAS  Google Scholar 

  8. Y. Cho W. Choi C.-H. Lee T. Hyeon H.-I. Lee (2001) Environ. Sci. Technol 35 966 Occurrence Handle10.1021/es001245e Occurrence Handle1:CAS:528:DC%2BD3MXjvV2ltg%3D%3D

    Article  CAS  Google Scholar 

  9. E. Bae W. Choi (2003) Environ. Sci. Technol 37 147 Occurrence Handle10.1021/es025617q Occurrence Handle1:CAS:528:DC%2BD38XotFKksrY%3D

    Article  CAS  Google Scholar 

  10. M.S. Vohra K. Tanaka (2001) Environ. Sci. Technol 35 411 Occurrence Handle10.1021/es001238q Occurrence Handle1:CAS:528:DC%2BD3cXos1amu78%3D

    Article  CAS  Google Scholar 

  11. H. Tada, H. Matsui, F. Shiota, M. Nomura, S. Ito, M. Yoshihara and K. Esumi, Chem. Commun. (2002) 1678.

  12. Q. Huang C.-S. Hong (2000) Chemosphere 41 871 Occurrence Handle1:CAS:528:DC%2BD3cXjsl2rsLs%3D

    CAS  Google Scholar 

  13. Y. Cho H. Kyung W. Choi (2004) Appl. Catal. B Environ 52 23 Occurrence Handle10.1016/j.apcatb.2004.03.013 Occurrence Handle1:CAS:528:DC%2BD2cXlsVehtbo%3D

    Article  CAS  Google Scholar 

  14. C. Minero G. Mariella V. Maurino E. Pelizzetti (2000) Langmuir 16 2632 Occurrence Handle1:CAS:528:DC%2BD3cXltVyktA%3D%3D

    CAS  Google Scholar 

  15. C. Minero G. Mariella V. Maurino D. Vione E. Pelizzetti (2000) Langmuir 16 8964 Occurrence Handle1:CAS:528:DC%2BD3cXmsFeiu7g%3D

    CAS  Google Scholar 

  16. M.S. Vohra S. Kim W. Choi (2003) J. Photochem. Photobiol. A Chem 160 55 Occurrence Handle10.1016/S1010-6030(03)00221-1 Occurrence Handle1:CAS:528:DC%2BD3sXls1Sru7o%3D

    Article  CAS  Google Scholar 

  17. H. Park W. Choi (2004) J. Phys. Chem. B 108 4086 Occurrence Handle1:CAS:528:DC%2BD2cXhvVymsbs%3D

    CAS  Google Scholar 

  18. H. Tada Y. Kubo M. Akazawa S. Ito (1998) Langmuir 14 2936 Occurrence Handle10.1021/la971015m Occurrence Handle1:CAS:528:DyaK1cXis12rtbs%3D

    Article  CAS  Google Scholar 

  19. H. Tada M. Akazawa Y. Kubo S. Ito (1998) J. Phys. Chem. B 102 6360 Occurrence Handle10.1021/jp980892d Occurrence Handle1:CAS:528:DyaK1cXkslGksrg%3D

    Article  CAS  Google Scholar 

  20. K.Y. Jung S.B. Park (2001) Korean J. Chem. Eng 18 879 Occurrence Handle1:CAS:528:DC%2BD38Xos1Gmuw%3D%3D

    CAS  Google Scholar 

  21. Z. Ding G.Q. Lu P.F. Greenfield (2000) J. Colloid Interface Sci 232 1 Occurrence Handle10.1006/jcis.2000.7154 Occurrence Handle1:CAS:528:DC%2BD3cXnvVeltLs%3D

    Article  CAS  Google Scholar 

  22. M.S. Ahmed Y.A. Attia (1995) J. Non-Cryst. Solids 186 402 Occurrence Handle10.1016/0022-3093(95)00085-2 Occurrence Handle1:CAS:528:DyaK2MXmsVWmtLc%3D

    Article  CAS  Google Scholar 

  23. S. Kim W. Choi (2002) Environ. Sci. Technol 36 2019 Occurrence Handle1:CAS:528:DC%2BD38Xit12kur0%3D

    CAS  Google Scholar 

  24. C.G. Hatchard C.A. Parker (1956) Proc. R. Soc. London, Ser. A 235 518

    Google Scholar 

  25. H. Tada (1996) Langmuir 12 966 Occurrence Handle10.1021/la950404i Occurrence Handle1:CAS:528:DyaK28Xns1OmsQ%3D%3D

    Article  CAS  Google Scholar 

  26. M.S. Vohra K. Tanaka (2003) Water Res 37 3992 Occurrence Handle10.1016/S0043-1354(03)00333-6 Occurrence Handle1:CAS:528:DC%2BD3sXlvFeju7s%3D

    Article  CAS  Google Scholar 

  27. A.T. Stone A. Torrents J. Smolen D. Vasudevan J. Hadley (1993) Environ. Sci. Technol 27 895 Occurrence Handle10.1021/es00042a012 Occurrence Handle1:CAS:528:DyaK3sXitF2hsr4%3D

    Article  CAS  Google Scholar 

  28. Y.-L. Lin T.-J. Wang Y. Jin (2002) Powder Technol 123 194 Occurrence Handle1:CAS:528:DC%2BD38Xhs1ymsL4%3D

    CAS  Google Scholar 

  29. H. Chun W. Yizhong T. Hongxiao (2001) Appl. Catal. B Environ 35 95 Occurrence Handle10.1016/S0926-3373(01)00236-3

    Article  Google Scholar 

  30. H. Tada M. Yamamoto S. Ito (1999) Langmuir 15 3699 Occurrence Handle1:CAS:528:DyaK1MXivVaktbw%3D

    CAS  Google Scholar 

  31. Z. Liu R.J. Davis (1994) J. Phys. Chem 98 1253 Occurrence Handle1:CAS:528:DyaK2cXhsVCrsrY%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonyong Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vohra, M.S., Lee, J. & Choi, W. Enhanced photocatalytic degradation of tetramethylammonium on silica-loaded titania. J Appl Electrochem 35, 757–763 (2005). https://doi.org/10.1007/s10800-005-1365-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-1365-9

Keywords

Navigation