Skip to main content

Advertisement

Log in

Sensitivity and specificity of optical coherence tomography angiography (OCT-A) for detection of choroidal neovascularization in real-life practice and varying retinal expertise level

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the diagnostic accuracy of OCT angiography (OCT-A) detecting or predicting choroidal neovascularization (CNV), by ophthalmologists of disparate degrees of skills in retinal diseases, using spectral domain optical coherence tomography (SD-OCT) and fluorescein angiography (FA) as a standard reference.

Methods

Retrospective observational case series. Patient presenting maculopathy and complete imaging were included. FA, SD-OCT, OCT-A and FA coupled to SD-OCT images were graded independently for presence or absence of CNV by ophthalmologists with varying expertise levels.

Results

Overall sensitivity of OCT-A was 85.62% (95% CI 79.04–90.76%) and specificity was 81.51% (95% CI 73.36–88.03). Sensitivity of FA was 74.51% (95% CI 66.84–81.20), and specificity was 82.35% (95% CI 74.30–88.73). Sensitivity of FA + SD-OCT was 92.72% (95% CI 87.34–96.30), and specificity was 90.91% (95% CI 84.31–95.37).

Conclusion

OCT-A has good sensitivity and specificity for the detection of CNV in all expertise level groups. OCT-A may soon become a routine tool for CNV diagnosis and follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grossniklaus HE, Green WR (2004) Choroidal neovascularization. Am J Ophthalmolog 137(3):496–503

    Article  Google Scholar 

  2. Querques G, Srour M, Massamba N et al (2013) Functional characterization and multimodal imaging of treatment-naive “quiescent” choroidal neovascularization. Invest Ophthalmol Vis Sci 54(10):6886–6892

    Article  PubMed  Google Scholar 

  3. Yannuzzi LA, Rohrer KT, Tindel LJ et al (1986) Fluorescein angiography complication survey. Ophthalmolog 93(5):611–617

    Article  CAS  Google Scholar 

  4. Ores R, Puche N, Querques G et al (2014) Gray hyper-reflective subretinal exudative lesions in exudative age-related macular degeneration. Am J Ophthalmol 158(2):354–361

    Article  PubMed  Google Scholar 

  5. Wilde C, Patel M, Lakshmanan A et al (2015) The diagnostic accuracy of spectral-domain optical coherence tomography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography. Eye 29:602–610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chhablani J, Deepa MJ, Tyagi M et al (2015) Fluorescein angiography and optical coherence tomography in myopic choroidal neovascularization. Eye 29:519–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lozzi A, Agrawal A, Boretsky A et al (2015) Image quality metrics for optical coherence angiography. Biomed Opt Express 6(7):2435–2447

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang A, Zhang Q, Chen CL, Wang RK (2015) Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt 20(10):100901

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu X, Kirby M, Zhao F (2014) Motion analysis and removal in intensity variation based OCT angiography. Biomed Opt Express 5(11):3833–3847

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina. 35(11):2163–2180

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cheng Y, Guo L, Pan C et al (2015) Statistical analysis of motion contrast in optical coherence tomography angiography. J Biomed Opt 20(11):116004

    Article  PubMed  Google Scholar 

  12. Zhang A, Zhang Q, Wang RK (2015) Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. Biomed Opt Express 6(10):4130–4143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Liu L, Gao SS, Bailey ST et al (2015) Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomed Opt Express 6(9):3564–3576

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moult E, Choi W, Waheed NK et al (2014) Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina 45(6):496–505

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Carlo TE, Bonini Filho MA, Chin AT et al (2015) Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmolog 122(6):1228–1238

    Article  Google Scholar 

  16. Coscas GJ, Lupidi M, Coscas F et al (2015) Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge. Retina 35(11):2219–2228

    Article  PubMed  Google Scholar 

  17. Coscas G, Lupidi M, Coscas F et al (2015) Optical coherence tomography angiography during follow-up: qualitative and quantitative analysis of mixed type I and II choroidal neovascularization after vascular endothelial growth factor trap therapy. Ophthalmic Res 54(2):57–63

    Article  PubMed  CAS  Google Scholar 

  18. Lumbroso B, Rispoli M, Savastano MC (2015) Longitudinal optical coherence tomography-angiography study of type 2 naive choroidal neovascularization early response after treatment. Retina 35(11):2242–2251

    Article  PubMed  CAS  Google Scholar 

  19. Huang D, Jia Y, Rispoli M et al (2015) Optical coherence tomography angiography of time course of choroidal neovascularization in response to anti-angiogenic treatment. Retina 35(11):2260–2264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kuehlewein L, Sadda SR, Sarraf D (2015) OCT Angiography and sequential quantitative analysis of type 2 neovascularisation after ranibizumab therapy. Eye (Lond) 29(7):932–935

    Article  CAS  Google Scholar 

  21. Spaide RF (2015) Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization. Am J Ophthalmol 160:6–16

    Article  PubMed  Google Scholar 

  22. Palejwala NV, Jia Y, Gao SS et al (2015) Detection of nonexudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography. Retina 35(11):2204–2211

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mastropasqua R, Di Antonio L, Di Staso S et al (2015) Optical coherence tomography angiography in retinal vascular diseases and choroidal neovascularization. J Ophthalmol 2015:343515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kuehlewein L, Bansal M, Lenis TL et al (2015) Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol 160(4):739–748

    Article  PubMed  Google Scholar 

  25. El Ameen A, Cohen SY, Semoun O et al (2015) Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography. Retina 35(11):2212–2218

    Article  PubMed  Google Scholar 

  26. Miere A, Querques G, Semoun O et al (2015) Optical coherence tomography angiography in early type 3 neovascularization. Retina 35(11):2236–2241

    Article  PubMed  Google Scholar 

  27. Inoue M, Balaratnasingam C, Freund KB (2015) Optical coherence tomography angiography of polypoidal choroidal vasculopathy and polypoidal choroidal neovascularization. Retina 35(11):2265–2274

    Article  PubMed  Google Scholar 

  28. Miere A, Semoun O, Cohen SY et al (2015) Optical coherence tomography angiography features of subretinal fibrosis in age-related macular degeneration. Retina 35(11):2275–2284

    Article  PubMed  Google Scholar 

  29. Choi W, Moult EM, Waheed NK et al (2015) Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmolog 122(12):2532–2544

    Article  Google Scholar 

  30. McClintic SM, Kim DY, Fingler J et al (2015) Detection of pigment epithelial detachment vascularization in age-related macular degeneration using phase-variance OCT angiography. Clin Ophthalmol 15(9):1299–1305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocio Blanco-Garavito.

Ethics declarations

Conflict of interest

The authors declare not having received any grant support or research funding for the presser article. They also declare not having any proprietary interest in the materials described in the article.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souedan, V., Souied, E.H., Caillaux, V. et al. Sensitivity and specificity of optical coherence tomography angiography (OCT-A) for detection of choroidal neovascularization in real-life practice and varying retinal expertise level. Int Ophthalmol 38, 1051–1060 (2018). https://doi.org/10.1007/s10792-017-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-017-0559-6

Keywords

Navigation