Skip to main content

Advertisement

Log in

Retina ganglion cell/inner plexiform layer and peripapillary nerve fiber layer thickness in patients with acromegaly

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Increased secretion of growth hormone and insulin-like growth factor-1 in acromegaly has various effects on multiple organs. However, the ocular effects of acromegaly have yet to be investigated in detail. The aim of the present study was to compare retina ganglion cell/inner plexiform layer (GCIPL) and peripapillary nerve fiber layer thickness (pRNFL) between patients with acromegaly and healthy control subjects using spectral domain optical coherence tomography (SD-OCT). This cross-sectional, comparative study included 18 patients with acromegaly and 20 control subjects. All participants underwent SD-OCT to measure pRNFL (in the seven peripapillary areas), GCIPL (in the nine ETDRS areas), and central macular thickness (CMT). Visual field (VF) examinations were performed using a Humphrey field analyzer in acromegalic patients. Measurements were compared between patients with acromegaly and control subjects. A total of 33 eyes of 18 patients with acromegaly and 40 eyes of 20 control subjects met the inclusion criteria of the present study. The overall calculated average pRNFL thickness was significantly lower in patients with acromegaly than in control subjects (P = 0.01), with pRNFL thickness significantly lower in the temporal superior and temporal inferior quadrants. Contrary to our expectations, pRNFL thickness in the nasal quadrant was similar between acromegalic and control subjects. The mean overall pRNFL thickness and superonasal, nasal, inferonasal, and inferotemporal quadrant pRNFL thicknesses were found to correlate with the mean deviation (MD) according to Spearman’s correlation. However, other quadrants were not correlated with VF sensitivity. No significant difference in CMT values was observed (P = 0.6). GCIPL thickness was significantly lower in all quadrants of the inner and outer macula, except for central and inferior outer quadrants, in the acromegaly group than that in the control group (P < 0.05). GCIPL thicknesses of the inferior inner and outer macula quadrants were found to correlate with MD, whereas no correlation was observed between other quadrants and VF sensitivity. We demonstrated that GCIPL thickness decreased in patients with acromegaly compared with that in control subjects. However, the nasal quadrant pRNFL thickness was similar in acromegaly, in contrast to our expectations. SD-OCT may have utility in the assessment of the effects of acromegaly on retinal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chanson P, Salenave S (2008) Acromegaly. Orphanet J Rare Dis 3:17. doi:10.1186/1750-1172-3-17

    Article  PubMed  PubMed Central  Google Scholar 

  2. Colao A, Ferone D, Marzullo P, Lombardi G (2004) Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 25:102–152. doi:10.1210/er.2002-0022

    Article  CAS  PubMed  Google Scholar 

  3. Scacchi M, Cavagnini F (2006) Acromegaly. Pituitary 9:297–303. doi:10.1007/s11102-006-0409-4

    Article  PubMed  Google Scholar 

  4. Ciresi A, Amato MC, Morreale D et al (2010) Cornea in acromegalic patients as a possible target of growth hormone action. J Endocrinol Invest 34:e30–e35. doi:10.1007/BF03347058

    Article  PubMed  Google Scholar 

  5. Polat SB, Ugurlu N, Ersoy R et al (2013) Evaluation of central corneal and central retinal thicknesses and intraocular pressure in acromegaly patients. Pituitary 17:327–332. doi:10.1007/s11102-013-0505-1

    Article  Google Scholar 

  6. Bramsen T, Klauber A, Bjerre P (1980) Central corneal thickness and intraocular tension in patients with acromegaly. Acta Ophthalmol 58:971–974

    Article  CAS  Google Scholar 

  7. Harvey S, Baudet M-L, Sanders EJ (2007) Growth hormone and developmental ocular function: clinical and basic studies. Pediatr Endocrinol Rev PER 5:510–515

    PubMed  Google Scholar 

  8. Chang-DeMoranville BM, Jackson IM (1992) Diagnosis and endocrine testing in acromegaly. Endocrinol Metab Clin North Am 21:649–668

    CAS  PubMed  Google Scholar 

  9. Van Setten G, Brismar K, Algvere P (2002) Elevated intraocular levels of insulin-like growth factor I in a diabetic patient with acromegaly. Orbit Amst Neth 21:161–167

    Article  Google Scholar 

  10. Martin DM, Yee D, Feldman EL (1992) Gene expression of the insulin-like growth factors and their receptors in cultured human retinal pigment epithelial cells. Brain Res Mol Brain Res 12:181–186

    Article  CAS  PubMed  Google Scholar 

  11. Grant MB, Mames RN, Fitzgerald C et al (1993) Insulin-like growth factor I acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor. Diabetologia 36:282–291

    Article  CAS  PubMed  Google Scholar 

  12. Hellström A, Svensson E, Carlsson B et al (1999) Reduced retinal vascularization in children with growth hormone deficiency. J Clin Endocrinol Metab 84:795–798. doi:10.1210/jcem.84.2.5484

    PubMed  Google Scholar 

  13. Bourla DH, Laron Z, Snir M et al (2006) Insulinlike growth factor I affects ocular development: a study of untreated and treated patients with Laron syndrome. Ophthalmology 113(1197):e1–e5. doi:10.1016/j.ophtha.2005.12.023

    Google Scholar 

  14. Poon A, McNeill P, Harper A, O’Day J (1995) Patterns of visual loss associated with pituitary macroadenomas. Aust N Z J Ophthalmol 23:107–115

    Article  CAS  PubMed  Google Scholar 

  15. Kan E, Kan EK, Atmaca A et al (2013) Visual field defects in 23 acromegalic patients. Int Ophthalmol 33:521–525. doi:10.1007/s10792-013-9733-7

    Article  PubMed  Google Scholar 

  16. Lee JP, Park IW, Chung YS (2011) The volume of tumor mass and visual field defect in patients with pituitary macroadenoma. Korean J Ophthalmol 25:37–41. doi:10.3341/kjo.2011.25.1.37

    Article  PubMed  PubMed Central  Google Scholar 

  17. Duru N, Ersoy R, Altinkaynak H et al (2016) Evaluation of retinal nerve fiber layer thickness in acromegalic patients using spectral-domain optical coherence tomography. Semin Ophthalmol 31:285–290. doi:10.3109/08820538.2014.962165

    PubMed  Google Scholar 

  18. Danesh-Meyer HV, Papchenko T, Savino PJ et al (2008) In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 49:1879–1885. doi:10.1167/iovs.07-1127

    Article  PubMed  Google Scholar 

  19. Monteiro MLR, Costa-Cunha LVF, Cunha LP, Malta RFS (2010) Correlation between macular and retinal nerve fibre layer Fourier-domain OCT measurements and visual field loss in chiasmal compression. Eye 24:1382–1390. doi:10.1038/eye.2010.48

    Article  CAS  PubMed  Google Scholar 

  20. Freda PU (2003) Current concepts in the biochemical assessment of the patient with acromegaly. Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF Res Soc 13:171–184

    Article  CAS  Google Scholar 

  21. Tristante G, Cordonnier M, Louryan S et al (1992) The eye and acromegaly: apropos of a case of ptosis. Bull Soc Belge Ophtalmol 243:11–16

    CAS  PubMed  Google Scholar 

  22. Mehra M, Mohsin M, Sharma P et al (2013) Epiphora and proptosis as a presenting complaint in acromegaly: report of two cases with review of literature. Indian J Endocrinol Metab 17:S149–S151. doi:10.4103/2230-8210.119553

    PubMed  PubMed Central  Google Scholar 

  23. Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabetes Res 2013:905058. doi:10.1155/2013/905058

    PubMed  PubMed Central  Google Scholar 

  24. Leal BC, Moura FC, Monteiro MLR (2006) Retinal nerve fiber layer loss documented by Stratus OCT TM in patients with pituitary adenoma: case report. Arq Bras Oftalmol 69:251–254. doi:10.1590/S0004-27492006000200021

    Article  PubMed  Google Scholar 

  25. Bu S, Yu G, Xu G (2013) Expression of insulin-like growth factor 1 receptor in rat retina following optic nerve injury. Acta Ophthalmol (Copenh) 91:e427–e431. doi:10.1111/aos.12096

    Article  CAS  Google Scholar 

  26. Jadresic A, Banks LM, Child DF et al (1982) The acromegaly syndrome. Relation between clinical features, growth hormone values and radiological characteristics of the pituitary tumours. Q J Med 51:189–204

    CAS  PubMed  Google Scholar 

  27. Zafar A, Jordan DR (2004) Enlarged extraocular muscles as the presenting feature of acromegaly. Ophthal Plast Reconstr Surg 20:334–336

    Article  PubMed  Google Scholar 

  28. Ben-Shlomo A, Sheppard MC, Stephens JM et al (2011) Clinical, quality of life, and economic value of acromegaly disease control. Pituitary 14:284–294. doi:10.1007/s11102-011-0310-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mueller GL, McKenna TJ, Kelly G et al (1981) Papilledema in two patients with acromegaly and intrasellar pituitary tumors. Arch Intern Med 141:1491–1495

    Article  CAS  PubMed  Google Scholar 

  30. Pekel G, Akin F, Ertürk MS et al (2014) Chorio-retinal thickness measurements in patients with acromegaly. Eye 28:1350–1354. doi:10.1038/eye.2014.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sen E, Tutuncu Y, Elgin U et al (2014) Comparing acromegalic patients to healthy controls with respect to intraocular pressure, central corneal thickness, and optic disc topography findings. Indian J Ophthalmol 62:841–845. doi:10.4103/0301-4738.141035

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cennamo G, Auriemma RS, Cardone D et al (2015) Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression. Eye 29:797–802. doi:10.1038/eye.2015.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johansson C, Lindblom B (2009) The role of optical coherence tomography in the detection of pituitary adenoma. Acta Ophthalmol (Copenh) 87:776–779. doi:10.1111/j.1755-3768.2008.01344.x

    Article  Google Scholar 

  34. Garcia T, Sanchez S, Litré CF et al (2014) Prognostic value of retinal nerve fiber layer thickness for postoperative peripheral visual field recovery in optic chiasm compression. J Neurosurg 121:165–169. doi:10.3171/2014.2.JNS131767

    Article  PubMed  Google Scholar 

  35. Jacob M, Raverot G, Jouanneau E et al (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147(64–70):e2. doi:10.1016/j.ajo.2008.07.016

    Google Scholar 

  36. Ohkubo S, Higashide T, Takeda H et al (2011) Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn J Ophthalmol 56:68–75. doi:10.1007/s10384-011-0093-4

    Article  Google Scholar 

  37. Monteiro MLR, Hokazono K, Fernandes DB et al (2014) Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Invest Ophthalmol Vis Sci 55:3328–3336. doi:10.1167/iovs.14-14118

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moon CH, Hwang SC, Kim B-T et al (2011) Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest Opthalmol Vis Sci 52:8527. doi:10.1167/iovs.11-8034

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Abdullah Kursat Cingu, MD, for his scientific assistance and critical revision of the paper.

Funding

The authors received no financial support for this study. The authors have no proprietary or financial interest in the products mentioned in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Şahin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, M., Şahin, A., Kılınç, F. et al. Retina ganglion cell/inner plexiform layer and peripapillary nerve fiber layer thickness in patients with acromegaly. Int Ophthalmol 37, 591–598 (2017). https://doi.org/10.1007/s10792-016-0310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-016-0310-8

Keywords

Navigation