Skip to main content
Log in

On Coverings of Products of Uninitialized Sequential Quantum Machines

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The concept of sequential quantum machine (SQM) was firstly introduced by Gudder. Qiu further investigated some properties of SQMs and introduced the concept of quantum sequential machine (QSM) which was an equivalent version of SQM. A uninitialized sequential quantum machine (USQM) is a sequential quantum machine which has no initialized state. The main purpose of this paper is to investigate three coverings of products of USQMs: covering, probability covering and weak probability covering. More specifically, we firstly introduce the concepts of products of USQMs and study properties of these products. Secondly, we introduce the concept of covering of USQMs, and study covering properties of products of USQMs. Finally, we introduce the concepts of probability cove- ring and weak probability covering of USQMs, and study properties of these coverings of products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. J. Stat. Phys. 21, 467–488 (1982)

    MathSciNet  Google Scholar 

  3. Deutsh, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 326–328 (1997)

    ADS  Google Scholar 

  6. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237, 275–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gudder, S.: Quantum computers. Int. J. Theor. Phys. 39, 2151–2177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qiu, D.W.: Quantum pushdown automata. Int. J. Theor. Phys. 41, 1627–1639 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Qiu, D.W., Ying, M.S.: Characterizations of quantum automata. Theor. Comput. Sci. 312, 479–489 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qiu, D.W.: Automata theory based on quantum logic: some characterizations. Inf. Comput. 190, 179–195 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qiu, D.W.: Automata theory based on quantum logic: reversibilities and pushdown automata. Theor. Comput. Sci. 386, 38–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ying, M.S.: Automata theory based on quantum logic i. Int. J. Theor. Phys. 39, 985–995 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ying, M.S.: Automata theory based on quantum logic ii. Int. J. Theor. Phys. 39, 2545–2557 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qiu, D.W.: Characterization of sequential quantum machines. Int. J. Theor. Phys. 41, 811–822 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, L.Z., Qiu, D. W.: Determination of equivalence between quantum sequential machines. Theor. Comput. Sci. 358, 65–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, L.Z., Qiu, D.W.: A note on quantum sequential machines. Theor. Comput. Sci. 410, 2529–2535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, L.Z., Qiu, D.W.: Determining the equivalence for one-way quantum finite automata. Theor. Comput. Sci. 403, 42–51 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zheng, S.G., Li, L.Z., Qiu, D.W.: Two-tape finite automata with quantum and classical states. Int. J. Theor. Phys. 50, 1262–1281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zheng, S.G., Qiu, D.W., Gruska, J., Li, L.Z., Mateus, P.: State succinctness of two-way finite automata with quantum and classical states. Theor. Comput. Sci. 499, 98–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qiu, D.W., Yu, S.: Hierarchy and equivalence of multi-letter quantum finite automata. Theor. Comput. Sci. 410, 3006–3017 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Qiu, D.W., Li, L.Z., Zou, X.F., Mateus, P., Gruska, J.: Multi-letter quantum finite automata: decidability of the equivalence and minimization of states. Acta Inform. 48, 271–290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zheng, S.G., Gruska, J., Qiu, D.W.: On the state complexity of semi-quantum finite automata. Theor. Inf. Appl. 48, 187–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zheng, S.G., Qiu, D.W., Gruska, J.: Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata. Inf. Comput. 241, 197–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gruska, J., Qiu, D.W., Zheng, S.G.: Generalizations of the distributed Deutsch-Jozsa promise problem. Math. Struct. Comput. Sci. 27, 311–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zheng, S.G., Li, L.Z., Qiu, D.W., Gruska, J.: Promise problems solved by quantum and classical finite automata. Theor. Comput. Sci. 666, 48–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qiu, D.W., Li, L.Z.: An overview of quantum computation models: quantum automata. Frontiers Comput. Sci. China 2, 193–207 (2008)

    Article  Google Scholar 

  27. Mereghetti, C., Palano, B.: Quantum finite automata with control language. RAIRO-Theoretical Informatics and Applications. 40(2), 315–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theor. Comput. Sci. 287(1), 299–311 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ambainis, A., Yakaryilmaz, A.: Automata and quantum computing. Comput. Sci. 67(5), 125–128 (2015). arXiv:1507.01988v2

    Google Scholar 

  30. Huang, F.D., Xie, Zh.W., Deng, Z.X., Yang, J.K.: Algebraic properties of uninitialized sequential quantum machines. Chin. J. Eng. Math. 34, 262–282 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Malik, D.S., Mordeson, J.N., Sen, M.K.: Products of fuzzy finite state machines. Fuzzy Set. Syst. 92, 95–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kumbhojkar, H.V., Chaudhari, S.R.: On covering of products of fuzzy finite state machines. Fuzzy Set. Syst. 125, 215–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maler, O.: A decomposition theorem for probabilistic transition systems. Theor. Comput. Sci. 145, 391–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)

    MATH  Google Scholar 

  35. Horn, R. A., Johnson, C.R.: Topics of matrix analysis, vol. 239-248. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

Download references

Acknowledgments

This research is supported by the Science and Technology Cooperation Project of Guizhou Province under the Grant NO. LH [2016]7062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feidan Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F. On Coverings of Products of Uninitialized Sequential Quantum Machines. Int J Theor Phys 58, 1418–1440 (2019). https://doi.org/10.1007/s10773-019-04031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04031-9

Keywords

Navigation