Skip to main content
Log in

Circularly Polarized Antenna Array Using Metallic Slanted Cross Slot for 5G MMW Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper presents a circularly polarized (CP) slot antenna array using substrate integrated waveguide (SIW)–feeding network at Q-band. To achieve CP radiation and high-gain performance simultaneously, a metallic radiating slanted cross slot is stacked atop an SIW coupling slot in the CP antenna element design. The fabricated CP antenna element features 14.6% (42.6–49.3 GHz) measured impedance bandwidth for |S11| ≤ −10 dB, 9.1% (42–46 GHz) measured 3-dB axial ratio (AR) bandwidth for AR ≤ 3, and 8.3 dBic measured peak gain, respectively. Then, a 1 × 8 antenna array is designed, fabricated, and measured. The measured results demonstrated that the impedance bandwidth and 3-dB AR bandwidth of the proposed 1 × 8 array are 14.8% (41.9–48.6 GHz) and 11% (43–48 GHz), respectively. The measured peak gain of the 1 × 8 array is 14.7 dBic at 44 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Abbreviations

SIW:

Substrate-integrated waveguide

CP:

Circularly polarized

MMW:

millimeter-wave

References

  1. “Millimeter wave propagation: Spectrum management implications,” U.S. Fed. Commun. Commission, Office Eng. Technol., New Technol. Develop. Division, Washington, DC, USA, Tech. Rep. 70, Jul. 1997.

  2. J. Wu, Y. J. Cheng and Y. Fan, "Millimeter-Wave Wideband High-Efficiency Circularly Polarized Planar Array Antenna," IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 535-542, Feb. 2016.

    Article  MathSciNet  Google Scholar 

  3. L. Cheng, K. Fan, Z. Hao and W. Hong, "Compact and wideband millimetre wave circularly polarised antenna array based on a SICL to waveguide transition," IET Microw. Antennas Propag., vol. 11, no. 14, pp. 2097-2103, 2017.

    Article  Google Scholar 

  4. A. Farahbakhsh, D. Zarifi and A. U. Zaman, "A mmWave Wideband Slot Array Antenna Based on Ridge Gap Waveguide With 30% Bandwidth," IEEE Trans. Antennas Propag., vol. 66, no. 2, pp. 1008-1013, Feb. 2018.

    Article  Google Scholar 

  5. M. Khalily, R. Tafazolli, P. Xiao and A. A. Kishk, "Broadband mm-Wave Microstrip Array Antenna With Improved Radiation Characteristics for Different 5G Applications," IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4641-4647, Sept. 2018.

    Article  Google Scholar 

  6. O. Quevedo-Teruel, J. Miao, M. Mattsson, A. Algaba-Brazalez, M. Johansson and L. Manholm, "Glide-Symmetric Fully Metallic Luneburg Lens for 5G Communications at Ka-Band," IEEE Antennas Wireless Propag. Lett., vol. 17, no. 9, pp. 1588-1592, Sept. 2018.

    Article  Google Scholar 

  7. P. Liu, J. Liu, W. Hu and X. Chen, "Hollow Waveguide 32 × 32-Slot Array Antenna Covering 71–86 GHz Band by the Technology of a Polyetherimide Fabrication," IEEE Antennas Wireless Propag. Lett., vol. 17, no. 9, pp. 1635-1638, Sept. 2018.

    Article  Google Scholar 

  8. Y. Li et al., "3-D Printed High-Gain Wideband Waveguide Fed Horn Antenna Arrays for Millimeter-Wave Applications," IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 2868-2877, May 2019.

    Article  Google Scholar 

  9. D. Deslandes and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68-70, Feb. 2001.

    Article  Google Scholar 

  10. H. Uchimura, T. Takenoshita and M. Fujii, "Development of a "laminated waveguide"," IEEE Trans. Microw. Theory Techn., vol. 46, no. 12, pp. 2438-2443, Dec. 1998.

    Article  Google Scholar 

  11. T. Y. Yang, W. Hong and Y. Zhang, "Wideband Millimeter-Wave Substrate Integrated Waveguide Cavity-Backed Rectangular Patch Antenna," IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 205-208, 2014.

    Article  Google Scholar 

  12. Y. Li and K. Luk, "Low-Cost High-Gain and Broadband Substrate-Integrated-Waveguide-Fed Patch Antenna Array for 60-GHz Band," IEEE Trans. Antennas Propag., vol. 62, no. 11, pp. 5531-5538, Nov. 2014.

    Article  MathSciNet  Google Scholar 

  13. M. Du, J. Xu, Y. Dong and X. Ding, "LTCC SIW-Vertical-Fed-Dipole Array Fed by a Microstrip Network With Tapered Microstrip-to-SIW Transitions for Wideband Millimeter-Wave Applications," IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1953-1956, 2017.

    Article  Google Scholar 

  14. Q. Zhu, K. B. Ng, C. H. Chan and K. Luk, "Substrate-Integrated-Waveguide-Fed Array Antenna Covering 57–71 GHz Band for 5G Applications," IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6298-6306, Dec. 2017.

    Article  Google Scholar 

  15. X. Li, J. Xiao, Z. Qi and H. Zhu, "Broadband and High-Gain SIW-Fed Antenna Array for 5G Applications," IEEE Access, vol. 6, pp. 56282-56289, 2018.

    Article  Google Scholar 

  16. J. Xiao, Z. Qi, X. Li and H. Zhu, "Broadband and High-Gain SIW-Fed Slot Array for Millimeter-Wave Applications," IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3484-3489, May 2019.

    Article  Google Scholar 

  17. A. B. Guntupalli and K. Wu, "60-GHz Circularly Polarized Antenna Array Made in Low-Cost Fabrication Process," IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 864-867, 2014.

    Article  Google Scholar 

  18. T. Zhang, Y. Zhang, L. Cao, W. Hong and K. Wu, "Single-Layer Wideband Circularly Polarized Patch Antennas for Q-Band Applications," IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 409-414, Jan. 2015.

    Article  MathSciNet  Google Scholar 

  19. Q. Zhu, K. Ng and C. H. Chan, "Printed Circularly Polarized Spiral Antenna Array for Millimeter-Wave Applications," IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 636-643, Feb. 2017.

    Article  Google Scholar 

  20. S. Park and S. Park, "LHCP and RHCP Substrate Integrated Waveguide Antenna Arrays for Millimeter-Wave Applications," IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 601-604, 2017.

    Article  Google Scholar 

  21. Q. Wu, J. Hirokawa, J. Yin, C. Yu, H. Wang and W. Hong, "Millimeter-Wave Planar Broadband Circularly Polarized Antenna Array Using Stacked Curl Elements," IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7052-7062, Dec. 2017.

    Article  Google Scholar 

  22. Y. Zhang, W. Hong and R. Mittra, "45 GHz Wideband Circularly Polarized Planar Antenna Array Using Inclined Slots in Modified Short-Circuited SIW," IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1669-1680, March 2019.

    Article  Google Scholar 

  23. W. L. Stutzman, "Estimating directivity and gain of antennas," IEEE Antennas Propag. Mag., vol. 40, no. 4, pp. 7-11, Aug. 1998.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Zihang Qi of Beijing University of Posts and Telecommunications, for his valuable suggestions and help. The authors would also like to thank Dr. Teni Ger for his help in the antenna measurements.

Funding

This work was supported by Natural Science Foundation of Fujian Province under Grant No. 2020J05149 and also supported by Project JAT190298 through the Education Department of Fujian Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiubo Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Ding, T., Luo, D. et al. Circularly Polarized Antenna Array Using Metallic Slanted Cross Slot for 5G MMW Applications. J Infrared Milli Terahz Waves 43, 165–180 (2022). https://doi.org/10.1007/s10762-021-00837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00837-z

Navigation