Skip to main content
Log in

Electromagnetic-Induced Transparency Resonance with Ultrahigh Figure of Merit Using Terahertz Metasurfaces

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, a terahertz metasurface supercell consists of two ring resonators with slightly different radii is proposed. Electromagnetic-induced transparency (EIT)–like resonance is excited with an ultrahigh figure of merit. Furthermore, the impact of the coupling between the two rings is investigated on the transmission amplitude response, the quality factor, and the EIT peak amplitude by varying the radius of the top resonator. The achieved figure of merit of the EIT peak reaches 88.65 and almost 20,000 when gold and a perfect electric conductor are used for the metallic layer, respectively. The simplicity and unique properties of the proposed design could render it to be a desirable candidate for filtering, slow light applications, and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Soukoulis CM, Linden S, Wegener M, Armakolas W (2007) Negative refractive index at optical wavelengths. Science 315:47–50

  2. Chen H-T, Taylor AJ, Yu N (2016) A review of metasurfaces: physics and applications. Reports Prog Phys 79:76401. https://doi.org/https://doi.org/10.1088/0034-4885/79/7/076401

  3. Beruete M, Jáuregui‐López I (2020) Terahertz sensing based on metasurfaces. Adv Opt Mater. https://doi.org/10.1017/CBO9781107415324.004

  4. Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11:917–924. https://doi.org/https://doi.org/10.1038/nmat3431

  5. Liu N, Langguth L, Weiss T, et al (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762. https://doi.org/https://doi.org/10.1038/nmat2495

  6. Papasimakis N, Fedotov VA, Savinov V, et al (2016) Electromagnetic toroidal excitations in matter and free space. Nat Mater 15:263–271. https://doi.org/https://doi.org/10.1038/nmat4563

  7. Doeleman HM, Monticone F, Den Hollander W, et al (2018) Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat Photonics 12:397–401. https://doi.org/https://doi.org/10.1038/s41566-018-0177-5

  8. Gu J, Singh R, Liu X, et al (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151–1156. https://doi.org/https://doi.org/10.1038/ncomms2153

  9. Chen X, Fan W (2020) Tunable Bound States in the Continuum in All-Dielectric Terahertz Metasurfaces. Nanomaterials 10:623. https://doi.org/https://doi.org/10.3390/nano10040623

  10. Liang M, Member S, Wu Z, et al (2011) Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films. IEEE Trans Microw Theory Tech 59:2719–2725

  11. Manjappa M, Srivastava YK, Singh R (2016) Lattice-induced transparency in planar metamaterials. Phys Rev B. https://doi.org/10.1103/PhysRevB.94.161103

  12. Omer AE, Shaker G, Safavi-Naeini S, et al (2020) Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell CSRR hexagonal configuration. Sci Rep 10:1–20. https://doi.org/https://doi.org/10.1038/s41598-020-72114-3

  13. Hanna J, Bteich M, Tawk Y, et al (2020) Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy. Sci Adv 6:5320–5330. https://doi.org/https://doi.org/10.1126/sciadv.aba5320

  14. Hara JFO, Singh R, Brener I, et al (2008) Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Express 16:1786–1795

  15. Jahn D, Eckstein R, Schneider LM, et al (2017) Digital Aerosol Jet Printing for the Fabrication of Terahertz Metamaterials. Adv Mater Technol. https://doi.org/10.1002/admt.201700236

  16. Kumar A, Wang C, Meng FY, et al (2020) High-sensitivity, quantified, linear and mediator-free resonator-based microwave biosensor for glucose detection. Sensors (Switzerland) 20:1–17. https://doi.org/https://doi.org/10.3390/s20144024

  17. Cong L, Tan S, Yahiaoui R, et al (2015) Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers : A comparison with the metasurfaces. Appl Phys Lett 106:31107. https://doi.org/https://doi.org/10.1063/1.4906109

  18. Singh R, Cao W, Al-Naib I, et al (2014) Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl Phys Lett 105:171101. https://doi.org/https://doi.org/10.1063/1.4895595

  19. Srivastava YK, Ako RT, Gupta M, et al (2019) Terahertz sensing of 7nm dielectric film with bound states in the continuum metasurfaces. Appl Phys Lett 115:151105. https://doi.org/https://doi.org/10.1063/1.5110383

  20. Feth N, König M, Husnik M, et al (2010) Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation. Opt Express 18:6545–6554

  21. Jansen C, Al-Naib IAI, Born N, Koch M (2010) Terahertz metasurfaces with high Q-factors. Appl Phys Lett 98:35032. https://doi.org/https://doi.org/10.1063/1.3553193

  22. Limonov MF, Rybin M V, Poddubny AN, Kivshar YS (2017) Fano resonances in photonics. Nat Photonics 11:543–554. https://doi.org/https://doi.org/10.1038/nphoton.2017.142

  23. Tan TCW, Plum E, Singh R (2020) Lattice‐Enhanced Fano Resonances from Bound States in the Continuum Metasurfaces. Adv Opt Mater 8:1901572. https://doi.org/https://doi.org/10.1002/adom.201901572

  24. Kupriianov AS, Xu Y, Sayanskiy A, et al (2019) Metasurface Engineering through Bound States in the Continuum. Phys Rev Appl 12:014024. https://doi.org/https://doi.org/10.1103/PhysRevApplied.12.014024

  25. Al-Naib I (2018) Thin-Film Sensing via Fano Resonance Excitation in Symmetric Terahertz Metamaterials. J Infrared, Millimeter, Terahertz Waves 39:1–5. https://doi.org/https://doi.org/10.1007/s10762-017-0448-0

  26. Liu N, Weiss T, Mesch M, et al (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107. https://doi.org/https://doi.org/10.1021/nl902621d

  27. Tassin P, Zhang L, Koschny T, et al (2009) Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency. Phys Rev Lett 102:053901. https://doi.org/https://doi.org/10.1103/PhysRevLett.102.053901

  28. Singh R, Al-Naib IAI, Yang Y, et al (2011) Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl Phys Lett 99:201107. https://doi.org/https://doi.org/10.1063/1.3659494

  29. Bai Q, Liu C, Chen J, et al (2010) Tunable slow light in semiconductor metamaterial in a broad terahertz regime. J Appl Phys 107:93104. https://doi.org/https://doi.org/10.1063/1.3357291

  30. Yan X, Yang M, Zhang Z, et al (2019) The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens Bioelectron 126:485–492. https://doi.org/https://doi.org/10.1016/j.bios.2018.11.014

  31. Papasimakis N, Fu YH, Fedotov VA, et al (2009) Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl Phys Lett 94:211902. https://doi.org/https://doi.org/10.1063/1.3138868

  32. Al-Naib IAI, Jansen C, Born N, Koch M (2011) Polarization and angle independent terahertz metamaterials with high Q-factors. Appl Phys Lett 98:091107. https://doi.org/https://doi.org/10.1063/1.3562372

  33. Born N, Al-Naib I, Jansen C, et al (2015) Terahertz Metamaterials with Ultrahigh Angular Sensitivity. Adv Opt Mater 3:642–645. https://doi.org/https://doi.org/10.1002/adom.201400469

  34. Al-Naib I, Yang Y, Dignam MMM, et al (2015) Ultra-high Q even eigenmode resonance in terahertz metamaterials. Appl Phys Lett 106:11102. https://doi.org/https://doi.org/10.1063/1.4905478

  35. Cong L, Manjappa M, Xu N, et al (2015) Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization. Adv Opt Mater 3:1537–1543. https://doi.org/https://doi.org/10.1002/adom.201500207

  36. Srivastava YK, Manjappa M, Cong L, et al (2016) Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry. Adv Opt Mater 4:457–463. https://doi.org/https://doi.org/10.1002/adom.201500504

Download references

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number IF-2020-013-Eng at Imam Abdulrahman bin Faisal University/College of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibraheem Al-Naib.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Naib, I. Electromagnetic-Induced Transparency Resonance with Ultrahigh Figure of Merit Using Terahertz Metasurfaces. J Infrared Milli Terahz Waves 42, 371–379 (2021). https://doi.org/10.1007/s10762-021-00775-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00775-w

Keywords

Navigation