Skip to main content
Log in

Developments in Terahertz Ellipsometry: Portable Spectroscopic Quasi-Optical Ellipsometer-Reflectometer and Its Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

The paper presents a new instrument—a portable spectroscopic quasi-optical (QO) THz ellipsometer-reflectometer (SQOTER). It combines two independent experimental techniques: THz ellipsometry and reflectometry. SQOTER is based on the hollow dielectric beamguide and beamguide components as a QO transmission line. This ultra-broadband line provides operation of the setup within 0.1…1 THz frequency range. The setup provides measurements of the ellipsometric parameters (at variable incidence angle) and the reflection coefficient (at normal incidence) in the wide spectral range. A detailed analysis of the spectral characteristics of QO transmission line and components was carried out. The principles and details of SQOTER measurements were described and its accuracy was estimated. A special system based on a silicon wafer was created for SQOTER testing. Reflection coefficients of this system measured independently by ellipsometry and reflectometry were compared and showed good agreement. The portable SQOTER capabilities connected with research and industrial applications have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

References

  1. P. Kühne, N. Armakavicius, V. Stanishev, C.M. Herzinger, M. Schubert, and V. Darakchieva, Advanced Terahertz Frequency-Domain Ellipsometry Instrumentation for In Situ and Ex Situ Applications, IEEE Trans. THz Sci. Technol. 8 (2018), no. 3, 257. https://doi.org/10.1109/TTHZ.2018.2814347.

  2. S. Park, Y. Li, D.B. Fullager, S. Schöche, C.M. Herzinger, S. Lee, and T. Hofmann, Terahertz-frequency dielectric anisotropy in three-dimensional polymethacrylates fabricated by stereolithography, Opt. Lett. 45 (2020), no. 7, 1982. https://doi.org/10.1364/OL.382988.

  3. A.V. Kuzikova, M.G. Novoselov, A.V. Vozianova, and M.K. Khodzitsky, Modified theory of terahertz time domain magneto-optical ellipsometry of magnetic media (M. Jarrahi, S. Preu, and D. Turchinovich, eds.), Vol. 11348, International Society for Optics and Photonics (SPIE), 2020. https://doi.org/10.1117/12.2560501.

  4. K. Tachi, S. Asagami, T. Fujii, T. Araki, Y. Nanishi, T. Nagashima, T. Iwamoto, Y. Sato, N. Morita, R. Sugie, and S. Kamiyama, Measurement of the properties of GaN layers using terahertz time-domain spectroscopic ellipsometry, Phys. Status Solidi B 254 (2017), no. 8, 1600767. https://doi.org/10.1002/pssb.201600767.

  5. N. Karl, M.S. Heimbeck, H.O. Everitt, H.T. Chen, A.J. Taylor, I. Brener, A. Benz, J.L. Reno, R. Mendis, and D.M. Mittleman, Characterization of an active metasurface using terahertz ellipsometry, Appl. Phys. Lett. 111 (2017), no. 19, 191101. https://doi.org/10.1063/1.5004194.

  6. A.A. Galuza, V.K. Kiseliov, I.V. Kolenov, A.I. Belyaeva, and Y.M. Kuleshov, Developments in THz-Range Ellipsometry: Quasi-Optical Ellipsometer, IEEE Trans. THz Sci. Technol. 6 (2016), no. 2, 183. https://doi.org/10.1109/TTHZ.2016.2525732.

  7. E. Bründermann, H.W. Hübers, and M.F. Kimmitt, Terahertz Techniques, Springer, Berlin, 2012. https://doi.org/10.1007/978-3-642-02592-1.

  8. Terahertz Techniques, 2014. https://doi.org/10.1007/978-94-007-3837-9.

  9. S. Zhong, Progress in terahertz nondestructive testing: A review. Front. Mech. Eng.: 1–9, 2018. https://doi.org/10.1007/s11465-018-0495-9.

  10. W. Ogieglo, J.A. Idarraga-Mora, S.M. Husson, and I. Pinnau, Direct ellipsometry for non-destructive characterization of interfacially-polymerized thin-film composite membranes, J. Membrane Sci. 608 (2020), 118174. https://doi.org/10.1016/j.memsci.2020.118174.

  11. C.D. Stoik, M.J. Bohn, and J.L. Blackshire, Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy, Opt. Exp. 16 (2008), no. 21, 17039. https://doi.org/10.1364/OE.16.017039.

  12. A.I. Belyaeva, A.A. Galuza, V.K. Kiseliov, I.V. Kolenov, A.A. Savchenko, E.M. Kuleshov, and S.Y. Serebriansky, Quasioptical scale modeling of metal surface localized defects influence on optical ellipsometry data, Telecommun. Radio Eng. 75 (2015), no. 2, 171.

  13. R.C. van Duijvenbode and G.J.M. Koper, A Comparison between Light Reflectometry and Ellipsometry in the Rayleigh Regime, J. Phys. Chem. B 104 (2000), no. 42, 9878. https://doi.org/10.1366/12-06883.

  14. I. Stabrawa, D. Banaś, K. Dworecki, A. Kubala-Kukuś, J. Braziewicz, U. Majewska, J. Wudarczyk-Moćko, M. Pajek, and S. Góźdź, Investigation of Gold Nanolayer Properties Using X-Ray Reflectometry and Spectroscopic Ellipsometry Methods, Acta Physica Polonica A 129 (2016), no. 2, 233. https://doi.org/10.12693/APhysPolA.129.233.

  15. H. Guleryuz, I. Kaus, C.C. Buron, C. Filiâtre, N. Hedin, L. Bergström, and M.A. Einarsrud, Deposition of silica nanoparticles onto alumina measured by optical reflectometry and quartz crystal microbalance with dissipation techniques, Colloids and Surfaces A: Physicochemical and Engineering Aspects 443 (2014), 384. https://doi.org/10.1016/j.colsurfa.2013.11.049.

  16. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, Wiley, Chichester, 2007. https://doi.org/10.1002/9780470060193.

  17. I.A. Tishchenko and A.I. Nosich, Early quasioptics of near-millimeter and submillimeter waves in IRE — Kharkov, Ukraine: from ideas to the microwave pioneer award, IEEE Microwave Magazine 4 (2003), 32.

  18. P. Kühne, C.M. Herzinger, M. Schubert, J.A. Woollam, and T. Hofmann, Invited Article: An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, Review of Scientific Instruments 85 (2014), no. 7, 071301.

  19. I.A. Azarov, V.A. Shvets, V.Y. Prokopiev, S.A. Dulin, S.V. Rykhlitskii, Y.Y. Choporova, B.A. Knyazev, V.N. Kruchinin, and M.V. Kruchinina, A Terahertz Ellipsometer, Instr. Exper. Techn. 58 (2015), no. 3, 381. https://doi.org/10.1134/S0020441215030033.

  20. T. Iwata, H. Uemura, Y. Mizutani, and T. Yasui, Double-modulation reflection-type terahertz ellipsometer for measuring the thickness of a thin paint coating, Opt. Express 22 (2014), no. 17, 20595. https://doi.org/10.1364/OE.22.020595.

  21. M. Neshat and N.P. Armitage, Terahertz time-domain spectroscopic ellipsometry: instrumentation and calibration, Optics Express 20 (2012), no. 27, 29063.

  22. T. Hofmann, U. Schade, C.M. Herzinger, P. Esquinazi, and M. Schubert, Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation, Review of Scientific Instruments 77 (2006), no. 6, 063902.

  23. T. Hofmann, C.M. Herzinger, A. Boosalis, T.E. Tiwald, J.A. Woollam, and M. Schubert, Review of Scientific Instruments, Vol. 81, 2010.

  24. A. Nosich, Y. Poplavko, D. Vavriv, and F. Yanovsky, Microwaves in Ukraine, Microwave Magazine, IEEE 3 (2002), no. 4, 82.

  25. Y.E. Kamenev, V.K. Kiseliov, Y.M. Kuleshov, B.N. Knyaz’kov, V.K. Kononenko, P.K. Nesterov, and M.S. Yanovsky, Submillimeter laser interferometer-polarimeter for plasma diagnostics, Int. J. Infrared Millimeter Waves 19 (1998), no. 6, 836. https://doi.org/10.1023/A:1022624423530.

  26. R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light, Elsevier, Amsterdam, 1996.

  27. V.K. Kiseliov, Y.M. Kuleshov, and V.K. Laptiy, Research of Terahertz-Band Gas HCN Laser with the Malter Effect in Hollow Cathode, Telecommun. Radio Eng. 63 (2005), no. 10, 913.

  28. T.L. Zinenko, Yevgeny Mitrofanovich Kuleshov, 1922–2016 — His contribution to early sub-millimeter wave quasioptics, International Journal of Microwave and Wireless Technologies 8 (2016), no. 8, 1129. https://doi.org/10.1017/S1759078716001380.

  29. V.K. Kiseliov, T.M. Kushta, and P.K. Nesterov, Quasi-optical waveguide modeling method and microcompact scattering range for the millimeter and submillimeter wave bands, IEEE Trans. Antennas Propag. 49 (2001), no. 5, 784. https://doi.org/10.1109/8.929633.

  30. E.A.J. Marcatili and R.A. Schmeltzer, Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers, The Bell System Technical Journal 43 (1964), no. 4, 1783.

  31. V.K. Kiseliov and S.V. Mizrakhy, Quasi-Optical Sectional Waveguide Taper for Submillimeter Wave Band, Telecommun. Radio Eng. 55 (2003), no. 7-9, 55. https://doi.org/10.1615/TelecomRadEng.v60.i789.70.

  32. Y.S. Lee, Principles of Terahertz Science and Technology, Springer, USA, 2009. https://doi.org/10.1007/978-0-387-09540-0.

  33. S. Mizrakhy, History and Perspectives of THz Components and Circuits Using Oversize Dielectric-Lined Waveguides, 2017. https://doi.org/10.1109/UKRCON.2017.8100301.

  34. P. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications. IEEE Press Series on RF and Microwave Technology, Wiley-IEEE Press, New Yorks, 1998.

  35. A. Belyaeva, V. Alimov, A. Galuza, K. Isobe, V. Konovalov, I. Ryzhkov, A. Savchenko, K. Slatin, V. Voitsenya, and T. Yamanishi, Optical characteristics of recrystallized tungsten mirrors exposed to low-energy, high flux D plasmas, J. Nuclear Mater. 413 (2011), no. 1, 5.

  36. A.I. Belyaeva, A.F. Bardamid, V.N. Bondarenko, J.W. Davis, A.A. Galuza, I.E. Garkusha, A.A. Haasz, V.G. Konovalov, A.D. Kudlenko, M. Poon, I.V. Ryzhkov, S.I. Solodovchenko, A. F. Shtan’, V.S. Voitsenya, and K.I. Yakimov, Ion Fluence and Energy Effects on the Optical Properties of SS Mirrors Bombarded by Hydrogen Ions, Physica Scripta T103 (2003), 109.

  37. A.I. Belyaeva, A.A. Galuza, I.V. Kolenov, A.A. Savchenko, S.N. Faizova, G.N. Raab, and D.A. Aksenov, Effect of Microrelief on the Optical Characteristics of Light Cr–Zr Copper Alloys Bombarded by Ions of Deuterium Plasma, Bull. Russian Acad. Sci. Phys. 76 (2012), no. 7, 854.

  38. A.I. Belyaeva, A.A. Galuza, I.V. Kolenov, V.G. Konovalov, A.A. Savchenko, and O.A. Skorik, Effect of sputtering on the samples of ITER-grade tungsten preliminarily irradiated by tungsten ions: Optical investigations, The Physics of Metals and Metallography 114 (2013), no. 8, 703. https://doi.org/10.1134/S0031918X13060033.

  39. E. Garcia-Caurel, A.D. Martino, J.P. Gaston, and L. Yan, Application of Spectroscopic Ellipsometry and Mueller Ellipsometry to Optical Characterization, Applied Spectroscopy 67 (2013), no. 1, 1. https://doi.org/10.1366/12-06883.

  40. D.N. Markatos, K.I. Tserpes, E. Rau, K. Brune, and S. Pantelakis, Degradation of Mode-I Fracture Toughness of CFRP Bonded Joints Due to Release Agent and Moisture Pre-Bond Contamination, The Journal of Adhesion 90 (2014), no. 2, 156.

  41. P.K. Nesterov, V.V. Yachin, T.L. Zinenko, Y.M. Kuleshov, and IEEE Trans, Characterization of CFRP Thermal Degradation by the Polarization-Frequency Reflectometry Method in Subterahertz Frequency Range, THz Sci. Technol. 6 (2016), no. 1, 91. https://doi.org/10.1109/TTHZ.2015.2503880.

  42. V.I. Bezborodov, V.K. Kiseliov, O.S. Kosiak, Y.M. Kuleshov, P.K. Nesterov, and M.S. Yanovsky, Quasi-optical sub-terahertz internal reflection reflectometer for non-destructive testing of carbon fiber reinforced plastics, Telecommun. Radio Eng. 73 (2014), no. 1, 83. https://doi.org/10.4028/www.scientific.net/AMR.664.547.

  43. V.I. Bezborodov, V.K. Kiseliov, Y.M. Kuleshov, P.K. Nesterov, S.V. Mizrakhi, I.V. Sherbatko, and M.S. Yanovsky, Sub-Terahertz Quasi-Optical Reflectometer for CFRP Surface Inspection, Adv. Mater. Res. 664 (2013), 547. https://doi.org/10.4028/www.scientific.net/AMR.664.547.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Galuza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaeva, A., Galuza, A., Kolenov, I. et al. Developments in Terahertz Ellipsometry: Portable Spectroscopic Quasi-Optical Ellipsometer-Reflectometer and Its Applications. J Infrared Milli Terahz Waves 42, 130–153 (2021). https://doi.org/10.1007/s10762-020-00762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00762-7

Keywords

Navigation