Skip to main content
Log in

Waveguide-Type Multiplexer for Multiline Observation of Atmospheric Molecules using Millimeter-Wave Spectroradiometer

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

In order to better understand the variation mechanism of ozone abundance in the middle atmosphere, the simultaneous monitoring of ozone and other minor molecular species, which are related to ozone depletion, is the most fundamental and critical method. A waveguide-type multiplexer was developed for the expansion of the observation frequency range of a millimeter-wave spectroradiometer, for the simultaneous observation of multiple molecular spectral lines. The proposed multiplexer contains a cascaded four-stage sideband-separating filter circuit. The waveguide circuit was designed based on electromagnetic analysis, and the pass frequency bands of stages 1–4 were 243–251 GHz, 227–235 GHz, 197–205 GHz, and 181–189 GHz. The insertion and return losses of the multiplexer were measured using vector network analyzers, each observation band was well-defined, and the bandwidths were appropriately specified. Moreover, the receiver noise temperature and the image rejection ratio (IRR) using the superconducting mixer at 4 K were measured. As a result, the increase in receiver noise due to the multiplexer compared with that of only the mixer can be attributed to the transmission loss of the waveguide circuit in the multiplexer. The IRRs were higher than 25 dB at the center of each observation band. This indicates that a high and stable IRR performance can be achieved by the waveguide-type multiplexer for the separation of sideband signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

Notes

  1. NDACC 〈http://www.ndaccdemo.org/

  2. ANSYS HFSS 〈https://www.ansys.com/products/electronics/ansys-hfss

  3. ECCOSORB®; MF 〈https://www.laird.com/rfmicrowave-absorbers-dielectrics/injection-molded-machined-casted/machinable-stock/eccosorb-mf

References

  1. Seinfeld, J. H., Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd edn., Chapter 5, John Wiley & Sons, Inc., Hoboken, New Jersey, USA (2016).

  2. Penfield, H., Litvak, M. M., Gottlieb, C. A., & Lilley, A. E., Mesospheric Ozone Measured From Ground-Based Millimeter Wave Observations, Journal of Geophysical Research, 81(34), 6115–6120 (1976).

  3. Kawabata, K., Fukui, Y., Ogawa, H., Mizuno, A., Fujimoto, M., Nozawa, S., Nakane, H., Hoko, H., & Yang, J., Observations of Ozone Mixing Ratio by Nagoya 4 m Millimeterwave Telescope, Journal of geomagnetism and geoelectricity, 44(11), 1085–1096 (1992).

  4. Kawabata, K., Ogawa, & Yonekura, Y., Ground-Based Millimeterwave Measurements of Mesospheric and Stratospheric Ozone Employing an SIS Mixer Receiver, Journal of geomagnetism and geoelectricity, 46(9), 755–770 (1994).

  5. Ogawa, H., Yonekura, Y., Kawabata, K., Suzuki, H., & Suzuki, M., Development of a Millimeterwave Instrument for Measurements of Strato-Mesospheric Ozone Using a Superconductive Receiver, Journal of geomagnetism and geoelectricity, 48(1), 145–150 (1996).

  6. Mizuno, A., Nagahama, T., Morihira, A., Ogawa, H., Mizuno, N., Yonekura, Y., Yamamoto, H., Nakane, H., & Fukui, Y., Millimeter-Wave Radiometer for the Measurement of Stratospheric ClO Using a Superconductive (SIS) Receiver Installed in the Southern Hemisphere, Int. J. Infrared and Millimeter Wave, 23(7), 981–995 (2002).

  7. Nagahama, T., Nakane, H., Fujinuma, Y., Morihira, A., Mizuno, A., Ogawa, H., & Fukui, Y., Ground-Based Millimeter-Wave Radiometer for Measuring the Stratospheric Ozone over Rikubetsu, Japan, Journal of the Meteorological Society of Japan, 85(4), 495–509 (2007).

  8. Ohyama, H., Nagahama, T., Mizuno, A., Nakane, H., & Ogawa, H., Observations of Stratospheric and Mesospheric O3 with a Millimeter-Wave Radiometer at Rikubetsu, Japan, Earth, Planets and Space, 68(34), 1–14 (2016).

  9. Kuwahara, T., Mizuno, A., Nagahama, T., Maezawa, H., Kojima, Y., Yamamoto, H., Okuda, T., Mizuno, N., Nakane, H., Fukui, Y., & Mizuno, A., Ground-Based Millimeter-Wave Observations of Stratospheric ClO over Atacama, Chile in the Mid-Latitude Southern Hemisphere, Atmospheric Measurement Techniques, 5(11), 2601–2611 (2012).

  10. Kuwahara, T., Nagahama, T., Maezawa, H., Mizuno, A., Morihira, A., Toriyama, N., Murayama, S., Matsuura, M., Sugimoto, T., Asayama, S., Mizuno, N., Onishi, T., & Fukui, Y., Ground-Based Millimeterwave observations of Water Vapor Emission (183 GHz) at Atacama, Chile, Advances in Space Research, 42(7), 1167–1171 (2008).

  11. Isono, Y., Mizuno, A., Nagahama, T., Miyoshi, Y., Nakamura, T., Kataoka, R., Tsutsumi, M., Ejiri, K. M., Fujiwara, H., & Maezawa, H., Variations of Nitric Oxide in the Mesosphere and Lower Thermosphere over Antarctica Associated with a Magnetic Storm in April 2012, Geophysical Research Letters, 41(7), 2568–2574 (2014).

  12. Isono, Y., Mizuno, A., Nagahama, T., Miyoshi, Y., Nakamura, T., Kataoka, R., Tsutsumi, M., Ejiri, K. M., Fujiwara, H., Maezawa, H., & Uemura, M., Ground-Based Observations of Nitric Oxide in the Mesosphere and Lower Thermosphere over Antarctica in 2012–2013, Journal of Geophysical Research: Space Physics, 119(9), 7745–7761 (2014).

  13. Orte, P. F., Salvador, J., Wolfram, E., D’Elia, R., Nagahama, T., Kojima, Y., Tanada, R., Kuwahara, T., Morihira, A., Quel, E., & Mizuno, A., Millimeter Wave Radiometer Installation in Río Gallegos, Southern Argentina, Proceedings SPIE 8001, International Conference on Applications of Optics and Photonics; 80013Q (2011).

  14. Orte, P. F., Wolfram, E., Salvador, J., Mizuno, A., Begue, N., Bencherif, H., Bali, J. L., D’Elia, R., Pazmino, A., Godin-Beekmann, S., Ohyama, H., Quiroga, J., Annales Geophysicae, 37, 613–629, (2019).

  15. Claude, S. M. X., Cunningham, C. T., Kerr, A. R., & Pan, S. -K., Design of a Sideband-Separating Balanced SIS Mixer Based on Waveguide Hybrids, ALMA Memo 316 (2000).

  16. Wootten, A., & Thompson, A. R., The Atacama LargeMillimeter/Submillimeter Array, Proc. IEEE, 97(8), 1463–1471 (2009).

  17. Claude, S. M. X., Niranjanan, P., Jiang, F., Duncan, D., Garcia, D., Halman, M., Ma, H., Wevers, I., & Yeung, K., Performance of the Production Band 3 Receivers (84–116 GHz) for the Atacama Large Millimeter Array (ALMA), J Infrared Milli Terahz Waves, 35(6–7), 563–582 (2014).

  18. Kerr, A. R., Pan, S. -K., Claude, S. M. X., Dindo, P., Lichtenberger, A. W., Effland, J. E., & Lauria, E. F., Development of the ALMA Band-3 and Band-6 Sideband-Separating SIS Mixers, IEEE Transactions on Terahertz Science and Technology, 4(2), 201–212 (2014).

  19. Asayama, S., Takahashi, T., Kubo, K., Ito, T., Inata, M., Suzuki, T., Wada, T., Soga, T., Kamada, C., Karatsu, M., Fujii, Y., Obuchi, Y., Kawashima, S., Iwashita, H., & Uzawa, Y., Development of ALMA Band 4 (125–163 GHz) Receiver, Publications of the Astronomical Society of Japan, 66(3), 57(1–13) (2014).

  20. Belitsky, V., et al., ALMA Band 5 Receiver Cartridge, Design, Performance, and Commissioning, Astronomy & Astrophysics, 611(A98), 1–10 (2018).

  21. Mahieu, S., Maier, D., Lazareff, B., Navarrini, A., Celestin, G., Chalain, J., Geoffroy, D., Laslaz, F., & Perrin, G., The ALMA Band-7 Cartridge, IEEE Transactions on Terahertz Science and Technology, 2(1), 29–39 (2012).

  22. Satou, N., Sekimoto, Y., Iizuka, Y., Ito, T., Shan, W., Kamba, T., Kumagai, K., Kamikura, M., Tomimura, Y., Serizawa, Y., Asayama, S., & Sugimoto, M., A Submillimeter Cartridge-Type Receiver: ALMA Band 8 (385–500 GHz) Qualification Model, Publications of the Astronomical Society of Japan, 60(5), 1199–1207 (2008).

  23. Asayama, S., Hasegawa, Y., Mizuno, A., Ogawa, H., & Onishi, T., A Novel Compact Low Loss Waveguide Image Rejection Filter Based on a Backward Coupler with Band Pass Filters for 100 GHz Band, J Infrared Milli Terahz Waves, 36(5), 445–454 (2015).

  24. Cameron, R. J., & Yu, M., Design of Manifold-Coupled Multiplexers, IEEE Microwave Magazine, 8(5), 46–59 (2007).

  25. Kojima, T., Gonzalez, A., Asayama, S., & Uzawa, Y., Design and Development of a Hybrid-Coupled Waveguide Multiplexer for a Multiband Receiver, IEEE Transactions on Terahertz Science and Technology, 7(1), 10–19 (2017).

  26. Pardo, J. R., Cernicharo, J., & Serabyn, E., Atmospheric Transmission at Microwaves (ATM):An Improved Model for Millimeter/Submillimeter, IEEE Transactions on Antennas and Propagation, 49(12), 1683–1694 (2001).

  27. Hasegawa, Y., Asayama, S., Harada, R., Tokuda, K., Kimura, K., Ogawa, H., & Onishi, T., Observational Demonstration of a High Image Rejection SIS Mixer Receiver Using a New Waveguide Filter at 230 GHz, Publications of the Astronomical Society of Japan, 69(6), 91(1–10) (2017).

  28. Sameri, M., & Kashani, F. H., Design and Realization of a Miniaturized Low Loss Iris Bandpass Filter on Substrate Integrated Waveguide Configuration in 2.4 GHz Band, 3(2-1), 50–54 (2015).

  29. Kerr, A. R., Moseley, H., Wollack, E., Grammer, W., Reiland, G., Henry, R., & Stewart, K. P., MF-112 and MF-116: Compact Waveguide Loads and FTS Measurements at Room Temperature and 5 K, ALMA Memo 494 (2004).

  30. Mena, F. P., & Baryshev, A. M., Design and Simulation of a Waveguide Load for ALMA-band 9, ALMA Memo 513 (2005).

  31. Noguchi, T., Shi, S.C., & Inatani, J., An SIS Mixer Using Two Junctions Connected in Parallel, IEEE Trans. Applied Superconductivity, 5(2), 2228–2231 (1995).

  32. Nakajima, T., Inoue, H., Fujii, Y., Miyazawa, C., Iwashita, H., Sakai, T., Noguchi, T., & Mizuno, A., Series-connected array of superconductor-insulator-superconductor junctions in the 100-GHz band heterodyne mixer for FOREST on the Nobeyama 45-m telescope, Publications of the Astronomical Society of Japan, 71(SP1), S17(1–10) (2018).

  33. Kerr, A. R., Pan, S. -K., & Effland, J. E., Sideband Calibration of Millimeter-Wave Receivers, ALMA Memo 357 (2001).

  34. Clark, A. F., Childs, G. E., & Wallace, G. H., Electrical resistivity of some engineering alloys at low temperatures, Cryogenics, 10(4), 295–305 (1970).

  35. Feldman, M. J., & D’Addario, L. R., Saturation of the SIS Direct Detector and the SIS Mixer, IEEE Transactions on Magnetics, MAG-23(2), 1254–1258 (1987).

  36. Tucker, J. R., Quantum Limited Detection in Tunnel Junction, IEEE Journal of Quantum Electronics, QE-15(11), 1234–1258 (1979).

  37. Kerr, A. R., Saturation by Noise and CW Signals in SIS Mixers, ALMA Memo 401 (2002).

  38. Tucker, J. R., & Feldman, M. J., Quantum detection at millimeter wavelengths, Reviews of Modern Physics, 57(4), 1055–1114 (1985).

  39. Crété, D.-G., McGrath, W. R., Richards, P. L., & Lloyd, F. L., Performance of Arrays of S1S Junctions in Heterodyne Mixers, IEEE Transactions Microwave Theory and Techniques, MTT-35(4), 435-440 (1987).

  40. Nakajima, T., Kaiden, M., Korogi, J., Kimura, K., Yonekura, Y., Ogawa, H., Nishiura, S., Dobashi, K., Handa, T., Kohno, K., Morino, J.-I., Asayama, S., & Noguchi, T., A New 60-cm Radio Survey Telescope with the Sideband-Separating SIS Receiver for the 200 GHz Band, Publications of the Astronomical Society of Japan, 59(5), 1005–1016 (2007).

  41. Nakajima, T., Sakai, T., Asayama, S., Kimura, K., Kawamura, M., Yonekura, Y., Ogawa, H., Kuno, N., Noguchi, T., Tsuboi, M., & Kawabe, R., A New 100-GHz Band Front-End System with a Waveguide-Type Dual-Polarization Sideband-Separating SIS Receiver for the NRO 45-m Radio Telescope, Publications of the Astronomical Society of Japan, 60(3), 435–443 (2008).

  42. Clancy, T. R., Sandor, B. J., & Rusch, D. W., Microwave observations and model ing of O3, H2O, and HO2 in the mesosphere, Journal of Geophysical Research, 99(D3), 5465–5473 (1994).

  43. Sandor, B. J., & Clancy, T. R., Mesospheric HOx chemistry from diurnal microwave observations of HO2, O3, and H2O, Journal of Geophysical Research, 103(D11), 13337–13351 (1998).

  44. Newnham, D. A., Espy, P. J., Clilverd, M. A., Rodger, C. J., Seppälä, A., Maxfield, D. J., Hartogh, P., Holmén, K., & Horne, B., Direct observations of nitric oxide produced by energetic electron precipitation into the Antarctic middle atmosphere, Geophysical Research Letters, 38(L20104), 1–5 (2011).

  45. Ryan, N. J., Palm, M., Hoffmann, C. G., Goliasch, J., & Notholt, J., Ground-based millimetre-wave measurements of middleatmospheric carbon monoxide above Ny-Ålesund (78.9 N, 11.9 E), Atmospheric Measurement Techniques, 12, 4077–4089 (2019).

Download references

Acknowledgments

The authors would like to thank Takahiko Kosegaki and Koki Satani for their contributions with respect to the measurement of the waveguide component performances, and Gemma Mizoguchi and Kouta Zengyou for the calculation of the gain compression of the SIS mixers. In addition, we would like to acknowledge Yasusuke Kojima and Ryuji Fujimori at ISEE, and Satoshi Ochiai at NICT for support with the measurements at NICT; Toshikazu Takahashi at Nobeyama Radio Observatory, National Astronomical Observatory of Japan, for support with the simulation experiment; Kazuhiro Kobayashi, Takafumi Onishi, Tetsuo Kano, Wataru Kato, and Ryota Nishimura at the Equipment Development Support Section, Technical Center, Nagoya University, for their helpful support and discussions. T. N. wishes to acknowledge the support of the CASIO Science Promotion Foundation. Part of the research was supported by the SATREPS program by JST and JICA, IX-th prioritized project AJ0901 by National Institute of Polar Research (NIPR), and JSPS KAKENHI Grant Numbers JP19H01952 and JP18KK0289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Nakajima.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, T., Haratani, K., Mizuno, A. et al. Waveguide-Type Multiplexer for Multiline Observation of Atmospheric Molecules using Millimeter-Wave Spectroradiometer. J Infrared Milli Terahz Waves 41, 1530–1555 (2020). https://doi.org/10.1007/s10762-020-00740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00740-z

Keywords

Navigation