Skip to main content
Log in

Pink1/Parkin-Mediated Mitophagy Regulated the Apoptosis of Dendritic Cells in Sepsis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) are vital antigen-presenting cells (APCs) in the immune system, whose apoptosis is closely related to the development of sepsis. Mitophagy is one of the necessary forms of selective autophagy that removes damaged or dysfunctional mitochondria to regulate immunity and inflammation. However, its effect on the apoptosis of DC in sepsis remains unknown. Here, we showed that sepsis activated the apoptosis and mitophagy of DC, and mitophagy had an anti-apoptotic effect on sepsis-induced DC apoptosis. In this study, we used cecal ligation and puncture (CLP) to simulate the pathophysiological state of sepsis. Apoptosis and mitophagy of DC were significantly enhanced in CLP mice compared with controls, and in the Pink1-KO (Pink1-knockout) mice CLP model, the level of apoptosis in DC was further increased while the level of mitophagy was decreased. In addition, more severe mitochondrial dysfunction was exhibited in DC of Pink1-KO mice CLP model compared to wild-type (WT) mice. The results suggest that Pink1/Parkin-mediated mitophagy is activated during sepsis and has an anti-apoptotic effect on DC, which regulates immune functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315 (8): 801–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Venet, F., and G. Monneret. 2018. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews. Nephrology 14 (2): 121–137.

    Article  CAS  PubMed  Google Scholar 

  3. Delano, M.J., and P.A. Ward. 2016. Sepsis-induced immune dysfunction: Can immune therapies reduce mortality? The Journal of Clinical Investigation. 126 (1): 23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cao, C., M. Yu, and Y. Chai. 2019. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death and Disease. 10 (10): 782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Luan, Y.Y., Y.M. Yao, X.Z. Xiao, and Z.Y. Sheng. 2015. Insights into the apoptotic death of immune cells in sepsis. Journal of Interferon Cytokine Research. 35 (1): 17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Springer, M.Z., and K.F. Macleod. 2016. In Brief: Mitophagy: Mechanisms and role in human disease. Journal of Pathology. 240 (3): 253–255.

    Article  CAS  Google Scholar 

  7. Youle, R.J., and D.P. Narendra. 2011. Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology. 12 (1): 9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Geisler, S., K.M. Holmstrom, D. Skujat, F.C. Fiesel, O.C. Rothfuss, P.J. Kahle, et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology. 12 (2): 119–131.

    Article  CAS  PubMed  Google Scholar 

  9. Dorn, G.W. 2016. Parkin-dependent mitophagy in the heart. Journal of Molecular and Cellular Cardiology 95: 42–49.

    Article  CAS  PubMed  Google Scholar 

  10. Bernardini, J.P., M. Lazarou, and G. Dewson. 2017. Parkin and mitophagy in cancer. Oncogene 36 (10): 1315–1327.

    Article  CAS  PubMed  Google Scholar 

  11. Shen, Z., Y. Zheng, J. Wu, Y. Chen, X. Wu, Y. Zhou, et al. 2017. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy 13 (3): 473–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo, Y., A. Hoffer, B. Hoffer, and X. Qi. 2015. Mitochondria: A Therapeutic Target for Parkinson’s Disease? International Journal of Molecular Sciences 16 (9): 20704–20730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang, R., L. Zeng, Y. Xie, Z. Yan, B. Zhou, L. Cao, et al. 2016. A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy 12 (12): 2374–2385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Piquereau, J., R. Godin, S. Deschênes, V.L. Bessi, M. Mofarrahi, S.N. Hussain, et al. 2013. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 9 (11): 1837–1851.

    Article  CAS  PubMed  Google Scholar 

  15. Bell, C., L. English, J. Boulais, M. Chemali, O. Caron-Lizotte, M. Desjardins, et al. 2013. Quantitative proteomics reveals the induction of mitophagy in tumor necrosis factor-α-activated (TNFα) macrophages. Molecular and Cellular Proteomics 12 (9): 2394–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, X.M., N. Dong, Y.B. Wang, Q.H. Zhang, Y. Yu, Y.M. Yao, et al. 2017. The involvement of endoplasmic reticulum stress response in immune dysfunction of dendritic cells after severe thermal injury in mice. Oncotarget 8 (6): 9035–9052.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Luan, Y.Y., R.Q. Yao, S. Tong, N. Dong, Z.Y. Sheng, and Y.M. Yao. 2016. Effect of tumor necrosis factor-α induced protein 8 like-2 on immune function of dendritic cells in mice following acute insults. Oncotarget 7 (21): 30178–30192.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smyth, L.A., D.A. Boardman, S.L. Tung, R. Lechler, and G. Lombardi. 2015. MicroRNAs affect dendritic cell function and phenotype. Immunology 144 (2): 197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhattacharya, A., X. Parillon, S. Zeng, S. Han, and N.T. Eissa. 2014. Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis. Journal of Biological Chemistry 289 (38): 26525–26532.

    Article  CAS  PubMed Central  Google Scholar 

  20. Zhang, H., L. Zheng, J. Chen, M. Fukata, R. Ichikawa, D.Q. Shih, et al. 2017. The protection role of Atg16l1 in CD11c(+)dendritic cells in murine colitis. Immunobiology 222 (7): 831–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reed, M., S.H. Morris, S. Jang, S. Mukherjee, Z. Yue, and N.W. Lukacs. 2013. Autophagy-inducing protein beclin-1 in dendritic cells regulates CD4 T cell responses and disease severity during respiratory syncytial virus infection. The Journal of Immunology 191 (5): 2526–2537.

    Article  CAS  PubMed  Google Scholar 

  22. D’Eliseo, D., L. Di Renzo, A. Santoni, and F. Velotti. 2017. Docosahexaenoic acid (DHA) promotes immunogenic apoptosis in human multiple myeloma cells, induces autophagy and inhibits STAT3 in both tumor and dendritic cells. Genes & Cancer 8 (1–2): 426–437.

    Article  CAS  Google Scholar 

  23. Oami, T., E. Watanabe, M. Hatano, S. Sunahara, L. Fujimura, A. Sakamoto, et al. 2017. Suppression of T Cell Autophagy Results in Decreased Viability and Function of T Cells Through Accelerated Apoptosis in a Murine Sepsis Model. Critical Care Medicine 45 (1): e77–e85.

    Article  CAS  PubMed  Google Scholar 

  24. Kushwah, R., and J. Hu. 2010. Dendritic cell apoptosis: Regulation of tolerance versus immunity. The Journal of Immunology. 185 (2): 795–802.

    Article  CAS  PubMed  Google Scholar 

  25. Chien, W.S., Y.H. Chen, P.C. Chiang, H.W. Hsiao, S.M. Chuang, S.I. Lue, et al. 2011. Suppression of autophagy in rat liver at late stage of polymicrobial sepsis. Shock 35 (5): 506–511.

    Article  CAS  PubMed  Google Scholar 

  26. Lalazar, G., G. Ilyas, S.A. Malik, K. Liu, E. Zhao, M. Amir, et al. 2016. Autophagy confers resistance to lipopolysaccharide-induced mouse hepatocyte injury. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (3): G377-386.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim, M.J., S.H. Bae, J.C. Ryu, Y. Kwon, J.H. Oh, J. Kwon, et al. 2016. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12 (8): 1272–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y., X. Mao, H. Chen, J. Feng, M. Yan, Y. Wang, et al. 2019. Dexmedetomidine alleviates LPS-induced apoptosis and inflammation in macrophages by eliminating damaged mitochondria via PINK1 mediated mitophagy. International Immunopharmacology. 73: 471–481.

    Article  CAS  PubMed  Google Scholar 

  29. Buras, J.A., B. Holzmann, and M. Sitkovsky. 2005. Animal models of sepsis: Setting the stage. Nature Reviews Drug Discovery. 4 (10): 854–865.

    Article  CAS  PubMed  Google Scholar 

  30. Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols. 4 (1): 31–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balan, S., M. Saxena, and N. Bhardwaj. 2019. Dendritic cell subsets and locations. International Review of Cell and Molecular Biology 348: 1–68.

    Article  CAS  PubMed  Google Scholar 

  32. Tinsley, K.W., M.H. Grayson, P.E. Swanson, A.M. Drewry, K.C. Chang, I.E. Karl, et al. 2003. Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. The Journal of Immunology 171 (2): 909–914.

    Article  CAS  PubMed  Google Scholar 

  33. Kushwah, R., J. Wu, J.R. Oliver, G. Jiang, J. Zhang, K.A. Siminovitch, et al. 2010. Uptake of apoptotic DC converts immature DC into tolerogenic DC that induce differentiation of Foxp3+ Treg. European Journal of Immunology. 40 (4): 1022–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Sullivan, T.E., L.R. Johnson, H.H. Kang, and J.C. Sun. 2015. BNIP3- and BNIP3L-Mediated Mitophagy Promotes the Generation of Natural Killer Cell Memory. Immunity 43 (2): 331–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larson-Casey, J.L., J.S. Deshane, A.J. Ryan, V.J. Thannickal, and A.B. Carter. 2016. Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis. Immunity 44 (3): 582–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, D.D., T. Li, and X.Y. Ji. 2017. Dendritic Cells in Sepsis: Pathological Alterations and Therapeutic Implications. Journal of Immunology Research. 2017: 3591248.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lewis, A.J., T.R. Billiar, and M.R. Rosengart. 2016. Biology and Metabolism of Sepsis: Innate Immunity, Bioenergetics, and Autophagy. Surgical Infections 17 (3): 286–293.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yin, X., H. Xin, S. Mao, G. Wu, and L. Guo. 2019. The Role of Autophagy in Sepsis: Protection and Injury to Organs. Frontiers in physiology. 10: 1071.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lazarou, M. 2015. Keeping the immune system in check: A role for mitophagy. Immunology and Cell Biology. 93 (1): 3–10.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y., N. Liu, and B. Lu. 2019. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neuroscience Therapeutics. 25 (7): 859–875.

    PubMed  PubMed Central  Google Scholar 

  41. Sun, Y., X. Yao, Q. Zhang, M. Zhu, Z. Liu, B. Ci, et al. 2018. Beclin-1-Dependent Autophagy Protects the Heart During Sepsis. Circulation 138 (20): 2247–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, X., F. Venet, C. Chung, J. Lomas-Neira and A. Ayala. 2007. Changes in dendritic cell function in the immune response to sepsis. Cell- & tissue-based therapy. Expert Opinion On Biological Therapy. 7(7): 929–938.

  43. Tang, C., H. Han, M. Yan, S. Zhu, J. Liu, Z. Liu, et al. 2018. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14 (5): 880–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parganlija, D., M. Klinkenberg, J. Dominguez-Bautista, M. Hetzel, S. Gispert, M.A. Chimi, et al. 2014. Loss of PINK1 impairs stress-induced autophagy and cell survival. PLOS One. 9(4): e95288.

  45. Tsubouchi, K., J. Araya, and K. Kuwano. 2018. PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Inflammation and Regeneration. 38: 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagar, H., S. Piao, and C. Kim. 2018. Role of Mitochondrial Oxidative Stress in Sepsis. Acute and critical care. 33 (2): 65–72.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Estaquier, J., F. Vallette, J.L. Vayssiere, and B. Mignotte. 2012. The mitochondrial pathways of apoptosis. Advances in Experimental Medicine and Biology 942: 157–183.

    Article  CAS  PubMed  Google Scholar 

  48. Wu, Y., Y.M. Yao, and Z.Q. Lu. 2019. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. Journal of Molecular Medicine (Berlin, Germany) 97 (4): 451–462.

    Article  CAS  Google Scholar 

  49. Lin, Q., S. Li, N. Jiang, X. Shao, M. Zhang, H. Jin, et al. 2019. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biology. 26.

  50. Zhi, L., Q. Qin, T. Muqeem, E.L. Seifert, W. Liu, S. Zheng, et al. 2019. Loss of PINK1 causes age-dependent decrease of dopamine release and mitochondrial dysfunction. Neurobiology of Aging. 75: 1–10.

    Article  CAS  PubMed  Google Scholar 

  51. Gandhi, S., A. Wood-Kaczmar, Z. Yao, H. Plun-Favreau, E. Deas, K. Klupsch, et al. 2009. PINK1-Associated Parkinson’s Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death. Molecular Cell. 33 (5): 627–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marongiu, R., B. Spencer, L. Crews, A. Adame, C. Patrick, M. Trejo, et al. 2009. Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. Journal of Neurochemistry. 108 (6): 1561–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank other members of our laboratories for helpful discussion and comments.

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 81772112).

Author information

Authors and Affiliations

Authors

Contributions

Yaolu Zhang, Longwang Chen, and Yinan Luo contributed equally to this work. Yinan Luo, Yongming Yao, and Zhongqiu Lu designed the research. Yaolu Zhang, Longwang Chen, Yinan Luo, Kang Wang, Xinyong Liu, and Zhong Xiao performed the research. Yaolu Zhang, Longwang Chen, Yinan Luo, Kang Wang, Xinyong Liu, Zhong Xiao, and Guangju Zhao analyzed the data. Longwang Chen and Guangju Zhao contributed reagents. Yaolu Zhang and Longwang Chen wrote the paper.

Corresponding authors

Correspondence to Yongming Yao or Zhongqiu Lu.

Ethics declarations

Ethics Approval

All studies were performed according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and all methods were authorized by the ethics committee of the Laboratory Animal Ethics Committee of Wenzhou Medical University.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Consent to Participate

Written informed consent for participation was obtained from all participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, L., Luo, Y. et al. Pink1/Parkin-Mediated Mitophagy Regulated the Apoptosis of Dendritic Cells in Sepsis. Inflammation 45, 1374–1387 (2022). https://doi.org/10.1007/s10753-022-01628-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01628-x

KEY WORDS

Navigation