Skip to main content

Advertisement

Log in

Expression Pattern and Immunoregulatory Roles of Galectin-1 and Galectin-3 in Atopic Dermatitis and Psoriasis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The pathogenesis of atopic dermatitis (AD) and psoriasis (Ps) overlaps, particularly the activation of the immune response and tissue damage. Here, we evaluated galectin (Gal)-1 and Gal-3 levels, which are beta-galactoside-binding proteins with immunomodulatory functions and examined their effects on human keratinocytes stimulated with either interleukin (IL)-4 or IL-17A. Skin biopsies from AD, Ps, and control patients were evaluated using histological and immunohistochemical analyses. Six studies containing publicly available transcriptome data were individually analyzed using the GEO2R tool to detect Gal-1 and Gal-3 mRNA levels. In vitro, IL-4- or IL-17A-stimulated keratinocytes were treated with or without Gal-1 or Gal-3 to evaluate cytokine release and migration. Our findings showed different patterns of expression for Gal-1 and Gal-3 in AD and Ps skins. Densitometric analysis in skin samples showed a marked increase in the protein Gal-1 levels in Ps epidermis and in both AD and Ps dermis compared to controls. Protein and mRNA Gal-3 levels were downregulated in AD and Ps lesional skin compared with the control samples. In vitro, both galectins addition abrogated the release of IL-8 and RANTES in IL-17-stimulated keratinocytes after 24 h, whereas IL-6 release was downregulated by Gal-3 and Gal-1 in IL-4- and IL-17-stimulated cells, respectively. Administration of both galectins also increased the rate of keratinocyte migration under IL-4 or IL-17 stimulation conditions compared with untreated cells. Altogether, the immunoregulatory and migration effects of Gal-1 and Gal-3 on keratinocytes under inflammatory microenvironment make them interesting targets for future therapies in cutaneous diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

All transcriptomes’ data were selected from the GEOR (available at http://www.ncbi.nlm.nih.gov/geo/geo2r/): GSE120721 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE120721); GSE16161 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE16161); GSE130588 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE130588); GSE166388 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE166388); GSE106087 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE106087); GSE117239 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE117239).

Code Availability (Software Application or Custom Code)

Not applicable.

References

  1. Bocheńska, K., E. Smolińska, M. Moskot, J. Jakóbkiewicz-Banecka, M. Gabig-Cimińska. 2017. Models in the research process of psoriasis. International Journal of Molecular Sciences 18.

  2. Dainichi, T., A. Kitoh, A. Otsuka, S. Nakajima, T. Nomura, D.H. Kaplan, and K. Kabashima. 2018. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nature Immunology 19: 1286–1298.

    Article  CAS  PubMed  Google Scholar 

  3. Cui, H., Y. Chai, and Y. Yu. 2019. Progress in developing decellularized bioscaffolds for enhancing skin construction. Journal of Biomedical Materials Research. Part A 107: 1849–1859.

    CAS  PubMed  Google Scholar 

  4. Griffiths, C.E., P. van de Kerkhof, and M. Czarnecka-Operacz. 2017. Psoriasis and atopic dermatitis. Dermatol Ther (Heidelb) 7: 31–41.

    Article  Google Scholar 

  5. Guttman-Yassky, E., and J.G. Krueger. 2017. Atopic dermatitis and psoriasis: Two different immune diseases or one spectrum? Current Opinion in Immunology 48: 68–73.

    Article  CAS  PubMed  Google Scholar 

  6. Michalek, I.M., B. Loring, and S.M. John. 2017. A systematic review of worldwide epidemiology of psoriasis. Journal of the European Academy of Dermatology and Venereology 31: 205–212.

    Article  CAS  PubMed  Google Scholar 

  7. Chiricozzi, A., P. Romanelli, E. Volpe, G. Borsellino, M. Romanelli. 2018. Scanning the Immunopathogenesis of Psoriasis. International Journal of Molecular Sciences 19

  8. Guttman-Yassky, E., J.G. Krueger, and M.G. Lebwohl. 2018. Systemic immune mechanisms in atopic dermatitis and psoriasis with implications for treatment. Experimental Dermatology 27: 409–417.

    Article  PubMed  Google Scholar 

  9. Calautti, E., L. Avalle, V. Poli. 2018. Psoriasis: a STAT3-centric view. International Journal of Molecular Sciences 19

  10. Bieber, T. 2008. Atopic dermatitis. New England Journal of Medicine 358: 1483–1494.

    Article  CAS  Google Scholar 

  11. Sacotte, R., and J.I. Silverberg. 2018. Epidemiology of adult atopic dermatitis. Clinics in Dermatology 36: 595–605.

    Article  PubMed  Google Scholar 

  12. Elias, P.M., and M. Steinhoff. 2008. “Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis. The Journal of Investigative Dermatology 128: 1067–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furue M. 2020. Regulation of skin barrier function via competition between AHR axis versus IL-13/IL-4‒JAK‒STAT6/STAT3 axis: pathogenic and therapeutic implications in atopic dermatitis. Journal of Clinical Medicine 9

  14. Wu, N.L., and F.T. Liu. 2018. The expression and function of galectins in skin physiology and pathology. Experimental Dermatology 27: 217–226.

    Article  PubMed  Google Scholar 

  15. Pasmatzi, E., C. Papadionysiou, A. Monastirli, G. Badavanis, and D. Tsambaos. 2019. Galectin 1 in dermatology: Current knowledge and perspectives. Acta Dermatovenerol Alp Pannonica Adriat 28: 27–31.

    PubMed  Google Scholar 

  16. Pasmatzi, E., C. Papadionysiou, A. Monastirli, G. Badavanis, and D. Tsambaos. 2019. Galectin 3: An extraordinary multifunctional protein in dermatology. Current knowledge and perspectives. Anais Brasileiros de Dermatologia 94: 348–354.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lacina, L., Z. Plzáková, K. Smetana, J. Stork, H. Kaltner, and S. André. 2006. Glycophenotype of psoriatic skin. Folia Biologica (Praha) 52: 10–15.

    CAS  Google Scholar 

  18. de la Fuente, H., S. Perez-Gala, P. Bonay, A. Cruz-Adalia, D. Cibrian, S. Sanchez-Cuellar, E. Dauden, M. Fresno, A. García-Diez, and F. Sanchez-Madrid. 2012. Psoriasis in humans is associated with down-regulation of galectins in dendritic cells. The Journal of Pathology 228: 193–203.

    Article  PubMed  CAS  Google Scholar 

  19. Shi, Z.R., G.Z. Tan, C.X. Cao, Y.F. Han, Z. Meng, X.Y. Man, Z.X. Jiang, Y.P. Zhang, N.N. Dang, K.H. Wei, D.F. Bu, F.T. Liu, and L. Wang. 2018. Decrease of galectin-3 in keratinocytes: A potential diagnostic marker and a critical contributor to the pathogenesis of psoriasis. Journal of Autoimmunity 89: 30–40.

    Article  CAS  PubMed  Google Scholar 

  20. Saegusa, J., D.K. Hsu, H.Y. Chen, L. Yu, A. Fermin, M.A. Fung, and F.T. Liu. 2009. Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. American Journal of Pathology 174: 922–931.

    Article  CAS  PubMed Central  Google Scholar 

  21. Corrêa, M.P., F.E.C. Andrade, A.D. Gimenes, C.D. Gil. 2017. Anti-inflammatory effect of galectin-1 in a murine model of atopic dermatitis. Journal of Molecular Medicine (Berl)

  22. Bao, L., G.C. Mohan, J.B. Alexander, C. Doo, K. Shen, J. Bao, and L.S. Chan. 2017. A molecular mechanism for IL-4 suppression of loricrin transcription in epidermal keratinocytes: Implication for atopic dermatitis pathogenesis. Innate Immunity 23: 641–647.

    Article  CAS  PubMed  Google Scholar 

  23. Cho, K.A., M. Park, Y.H. Kim, and S.Y. Woo. 2017. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes. Biochemical and Biophysical Research Communications 487: 856–861.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, S., F. Qi, Y. Gong, J. Zhang, B. Zhu. 2021. Biological Therapies for Atopic Dermatitis: A Systematic Review. Dermatology: 1–11

  25. Lebwohl, M., K. Papp, C. Han, B. Schenkel, N. Yeilding, Y. Wang, and G.G. Krueger. 2010. Ustekinumab improves health-related quality of life in patients with moderate-to-severe psoriasis: Results from the PHOENIX 1 trial. British Journal of Dermatology 162: 137–146.

    Article  CAS  Google Scholar 

  26. Leonardi CL, Powers JL, Matheson RT, Goffe BS, Zitnik R, Wang A, Gottlieb AB, Group EPS. 2003. Etanercept as monotherapy in patients with psoriasis. New England Journal of Medicine 349: 2014–2022.

    Article  Google Scholar 

  27. Sbidian, E., A. Chaimani, I. Garcia-Doval, L. Doney, C. Dressler, C. Hua, C. Hughes, L. Naldi, S. Afach, L. Le Cleach. 2021. Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis. Cochrane Database System Review 4: CD011535

  28. Raja, Sivamani K., M.S. Garcia, and R.R. Isseroff. 2007. Wound re-epithelialization: Modulating keratinocyte migration in wound healing. Frontiers in Bioscience 12: 2849–2868.

    Article  CAS  PubMed  Google Scholar 

  29. Gil, C.D., D. Cooper, G. Rosignoli, M. Perretti, and S.M. Oliani. 2006. Inflammation-induced modulation of cellular galectin-1 and -3 expression in a model of rat peritonitis. Inflammation Research 55: 99–107.

    Article  CAS  PubMed  Google Scholar 

  30. Mello, C.B., L. Ramos, A.D. Gimenes, T.R. Andrade, S.M. Oliani, and C.D. Gil. 2015. Immunomodulatory effects of galectin-1 on an IgE-mediated allergic conjunctivitis model. Investigative Ophthalmology & Visual Science 56: 693–704.

    Article  CAS  Google Scholar 

  31. Ge, X.N., S.G. Ha, Y.G. Greenberg, A. Rao, I. Bastan, A.G. Blidner, S.P. Rao, G.A. Rabinovich, and P. Sriramarao. 2016. Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1. Proc Natl Acad Sci U S A 113: E4837–E4846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rabinovich, G.A., M.M. Iglesias, N.M. Modesti, L.F. Castagna, C. Wolfenstein-Todel, C.M. Riera, and C.E. Sotomayor. 1998. Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: Biochemical and functional characterization. The Journal of Immunology 160: 4831–4840.

    Article  CAS  PubMed  Google Scholar 

  33. Gil, C.D., M. La, M. Perretti, and S.M. Oliani. 2006. Interaction of human neutrophils with endothelial cells regulates the expression of endogenous proteins annexin 1, galectin-1 and galectin-3. Cell Biology International 30: 338–344.

    Article  CAS  PubMed  Google Scholar 

  34. Iqbal, A.J., D. Cooper, A. Vugler, B.R. Gittens, A. Moore, and M. Perretti. 2013. Endogenous galectin-1 exerts tonic inhibition on experimental arthritis. The Journal of Immunology 191: 171–177.

    Article  CAS  PubMed  Google Scholar 

  35. Mello-Bosnic, C., A.D. Gimenes, S.M. Oliani, and C.D. Gil. 2018. Treatment with galectin-1 eye drops regulates mast cell degranulation and attenuates the severity of conjunctivitis. European Journal of Pharmacology 833: 124–130.

    Article  CAS  PubMed  Google Scholar 

  36. Zuberi, R.I., L.G. Frigeri, and F.T. Liu. 1994. Activation of rat basophilic leukemia cells by epsilon BP, an IgE-binding endogenous lectin. Cellular Immunology 156: 1–12.

    Article  CAS  PubMed  Google Scholar 

  37. Zuberi, R.I., D.K. Hsu, O. Kalayci, H.Y. Chen, H.K. Sheldon, L. Yu, J.R. Apgar, T. Kawakami, C.M. Lilly, and F.T. Liu. 2004. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. American Journal of Pathology 165: 2045–2053.

    Article  CAS  Google Scholar 

  38. Rao, S.P., Z. Wang, R.I. Zuberi, L. Sikora, N.S. Bahaie, B.L. Zuraw, F.T. Liu, and P. Sriramarao. 2007. Galectin-3 functions as an adhesion molecule to support eosinophil rolling and adhesion under conditions of flow. The Journal of Immunology 179: 7800–7807.

    Article  CAS  PubMed  Google Scholar 

  39. La, M., T.V. Cao, G. Cerchiaro, K. Chilton, J. Hirabayashi, K. Kasai, S.M. Oliani, Y. Chernajovsky, and M. Perretti. 2003. A novel biological activity for galectin-1: Inhibition of leukocyte-endothelial cell interactions in experimental inflammation. American Journal of Pathology 163: 1505–1515.

    Article  CAS  PubMed Central  Google Scholar 

  40. Cooper, D., L.V. Norling, and M. Perretti. 2008. Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow. Journal of Leukocyte Biology 83: 1459–1466.

    Article  CAS  PubMed  Google Scholar 

  41. Gil, C.D., C.E. Gullo, and S.M. Oliani. 2011. Effect of exogenous galectin-1 on leukocyte migration: Modulation of cytokine levels and adhesion molecules. International Journal of Clinical and Experimental Pathology 4: 74–84.

    Google Scholar 

  42. Norling, L.V., A.L. Sampaio, D. Cooper, and M. Perretti. 2008. Inhibitory control of endothelial galectin-1 on in vitro and in vivo lymphocyte trafficking. The FASEB Journal 22: 682–690.

    Article  CAS  PubMed  Google Scholar 

  43. Dias-Baruffi, M., H. Zhu, M. Cho, S. Karmakar, R.P. McEver, and R.D. Cummings. 2003. Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. Journal of Biological Chemistry 278: 41282–41293.

    Article  CAS  Google Scholar 

  44. Stowell, S.R., S. Karmakar, C.J. Stowell, M. Dias-Baruffi, R.P. McEver, and R.D. Cummings. 2007. Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109: 219–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sato, S., N. Ouellet, I. Pelletier, M. Simard, A. Rancourt, and M.G. Bergeron. 2002. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. The Journal of Immunology 168: 1813–1822.

    Article  CAS  PubMed  Google Scholar 

  46. Fernández, G.C., J.M. Ilarregui, C.J. Rubel, M.A. Toscano, S.A. Gómez, M. Beigier Bompadre, M.A. Isturiz, G.A. Rabinovich, and M.S. Palermo. 2005. Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: Involvement of alternative MAPK pathways. Glycobiology 15: 519–527.

    Article  PubMed  Google Scholar 

  47. Snarr, B.D., G. St-Pierre, B. Ralph, M. Lehoux, Y. Sato, A. Rancourt, T. Takazono, S.R. Baistrocchi, R. Corsini, M.P. Cheng, M. Sugrue, L.R. Baden, K. Izumikawa, H. Mukae, J.R. Wingard, I.L. King, M. Divangahi, M.S. Satoh, B.G. Yipp, S. Sato, D.C. Sheppard. 2020. Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatus infection. PLoS Pathogens 16: e1008741

  48. Stowell, S.R., Y. Qian, S. Karmakar, N.S. Koyama, M. Dias-Baruffi, H. Leffler, R.P. McEver, and R.D. Cummings. 2008. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. The Journal of Immunology 180: 3091–3102.

    Article  CAS  PubMed  Google Scholar 

  49. Patterson, R.J., W. Wang, and J.L. Wang. 2002. Understanding the biochemical activities of galectin-1 and galectin-3 in the nucleus. Glycoconjugate Journal 19: 499–506.

    Article  CAS  PubMed  Google Scholar 

  50. Hsu, D.K., R.Y. Yang, J. Saegusa, and F.T. Liu. 2015. Analysis of the intracellular role of galectins in cell growth and apoptosis. Methods in Molecular Biology 1207: 451–463.

    Article  CAS  PubMed  Google Scholar 

  51. Chovanec, M., K. Smetana, B. Dvoránková, Z. Plzáková, S. André, and H.J. Gabius. 2004. Decrease of nuclear reactivity to growth-regulatory galectin-1 in senescent human keratinocytes and detection of non-uniform staining profile alterations upon prolonged culture for galectin-1 and -3. Anatomia Histologia and Embryologia 33: 348–354.

    Article  CAS  Google Scholar 

  52. Klíma, J., L. Lacina, B. Dvoránková, D. Herrmann, J.W. Carnwath, H. Niemann, H. Kaltner, S. André, J. Motlík, H.J. Gabius, and K. Smetana. 2009. Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiological Research 58: 873–884.

    Article  PubMed  Google Scholar 

  53. Gál, P., T. Vasilenko, M. Kostelníková, J. Jakubco, I. Kovác, F. Sabol, S. André, H. Kaltner, H.J. Gabius, and K. Smetana. 2011. Open wound healing in vivo: Monitoring binding and presence of adhesion/growth-regulatory galectins in rat skin during the course of complete re-epithelialization. Acta Histochemica et Cytochemica 44: 191–199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Akahani, S., P. Nangia-Makker, H. Inohara, H.R. Kim, and A. Raz. 1997. Galectin-3: A novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Research 57: 5272–5276.

    CAS  PubMed  Google Scholar 

  55. Hsu, D.K., R.Y. Yang, Z. Pan, L. Yu, D.R. Salomon, W.P. Fung-Leung, and F.T. Liu. 2000. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. American Journal of Pathology 156: 1073–1083.

    Article  CAS  PubMed Central  Google Scholar 

  56. Wang, J.L., R.M. Gray, K.C. Haudek, and R.J. Patterson. 2004. Nucleocytoplasmic lectins. Biochimica et Biophysica Acta 1673: 75–93.

    Article  CAS  PubMed  Google Scholar 

  57. Saegusa, J., D.K. Hsu, W. Liu, I. Kuwabara, Y. Kuwabara, L. Yu, and F.T. Liu. 2008. Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation. The Journal of Investigative Dermatology 128: 2403–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ansel, J., P. Perry, J. Brown, D. Damm, T. Phan, C. Hart, T. Luger, and S. Hefeneider. 1990. Cytokine modulation of keratinocyte cytokines. The Journal of Investigative Dermatology 94: 101S-S107.

    Article  CAS  PubMed  Google Scholar 

  59. Tüzün, Y., M. Antonov, N. Dolar, and R. Wolf. 2007. Keratinocyte cytokine and chemokine receptors. Dermatologic Clinics 25 (467–76): vii.

    Google Scholar 

  60. Qiao, P., W. Guo, Y. Ke, H. Fang, Y. Zhuang, M. Jiang, J. Zhang, S. Shen, H. Qiao, E. Dang, and G. Wang. 2019. Mechanical stretch exacerbates psoriasis by stimulating keratinocyte proliferation and cytokine production. The Journal of Investigative Dermatology 139: 1470–1479.

    Article  CAS  PubMed  Google Scholar 

  61. Pastore, S., F. Mascia, and G. Girolomoni. 2006. The contribution of keratinocytes to the pathogenesis of atopic dermatitis. European Journal of Dermatology 16: 125–131.

    CAS  PubMed  Google Scholar 

  62. Haque, A., and H. Woolery-Lloyd. 2021. Inflammaging in dermatology: A new frontier for research. Journal of Drugs in Dermatology 20: 144–149.

    Article  PubMed  Google Scholar 

  63. Kim, M.H., W.H. Wu, J.H. Choi, J. Kim, J.H. Jun, Y. Ko, and J.H. Lee. 2018. Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts. Wound Repair Regen 26 (Suppl 1): S9–S18.

    Article  PubMed  Google Scholar 

  64. Elola, M.T., F. Ferragut, S.P. Méndez-Huergo, D.O. Croci, C. Bracalente, and G.A. Rabinovich. 2018. Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cellular Immunology 333: 34–45.

    Article  CAS  PubMed  Google Scholar 

  65. Kariya, Y., C. Kawamura, T. Tabei, and J. Gu. 2010. Bisecting GlcNAc residues on laminin-332 down-regulate galectin-3-dependent keratinocyte motility. Journal of Biological Chemistry 285: 3330–3340.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Paulo Celso Franco from the Department of Morphology and Genetics, UNIFESP, for his skillful technical assistance.

Funding

This research was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant number 2017/26872–5 (CDG). MPC was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES (Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Mab Pereira Corrêa], [Cristiane Damas Gil]; Methodology: [Mab Pereira Corrêa], [Rebeca Donizete Correia-Silva], [Gisela Rodrigues da Silva Sasso], [Solange Corrêa Garcia Pires D’Ávila], [Karin Vicente Greco]; Formal analysis and investigation: [Mab Pereira Corrêa]; Writing-original draft preparation: [Mab Pereira Corrêa], [Cristiane Damas Gil]; Writing-review and editing: [Karin Vicente Greco], [Sonia Maria Oliani]; Funding acquisition: [Cristiane Damas Gil]; Resources: [Karin Vicente Greco], [Sonia Maria Oliani], [Cristiane Damas Gil]; Supervision: [Cristiane Damas Gil].

Corresponding author

Correspondence to Cristiane D. Gil.

Ethics declarations

Ethics Approval

The study with human skin biopsies was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of FAMERP in the meeting of 17 August 2017 (protocol code 2.225.518).

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2587 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, M.P., Correia-Silva, R.D., Sasso, G.R.S. et al. Expression Pattern and Immunoregulatory Roles of Galectin-1 and Galectin-3 in Atopic Dermatitis and Psoriasis. Inflammation 45, 1133–1145 (2022). https://doi.org/10.1007/s10753-021-01608-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01608-7

KEY WORDS

Navigation