Skip to main content
Log in

IRF-1 Intervention in the Classical ROS-Dependent Release of NETs during LPS-Induced Acute Lung Injury in Mice

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Previously, we demonstrated that neutrophil extracellular traps (NETs) play an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism is unclear. In this study, we showed that knockout of interferon regulatory factor 1 (IRF-1) in mice strongly attenuated the generation of NETs and reactive oxygen species (ROS) production in neutrophils from bronchoalveolar lavage fluid and alleviated LPS-induced lung injury and systemic inflammation. Our in vitro experiments demonstrated that LPS-stimulated platelets induce NET release through two distinct processes: an ROS-independent early/rapid NETosis and a later ROS-dependent classical NETosis. Notably, the classical ROS-dependent pathway plays a dominant role in the generation of NETs. Furthermore, we showed that IRF-1 knockout does not affect the formation of NETs in early/rapid NETosis, but significantly attenuates ROS production and the generation of NETs in classical NETosis, which determines the total levels of NETs released by LPS-stimulated platelets. In conclusion, IRF-1 deficiency plays a key role in moderating the excessive NETs formed via ROS in the classical pathway and retaining the protective role of the low-NET levels generated in early/rapid NETosis, which may serve as a novel target in acute lung injury/acute respiratory distress syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. The Journal of Clinical Investigation 122 (8): 2731–2740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Modrykamien, A.M., and P. Gupta. 2015. The acute respiratory distress syndrome. Proceedings (Baylor University Medical Center) 28 (2): 163–171.

    Article  Google Scholar 

  3. Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F. Van Haren, A. Larsson, and D.F. Mcauley. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800.

    Article  CAS  PubMed  Google Scholar 

  4. Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295 (3): L379–L399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.

    Article  CAS  PubMed  Google Scholar 

  6. Perl, M., J. Lomas-Neira, F. Venet, C.S. Chung, and A. Ayala. 2011. Pathogenesis of indirect (secondary) acute lung injury. Expert Review of Respiratory Medicine 5 (1): 115–126.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Welbourn, C.R., and Y. Young. 1992. Endotoxin, septic shock and acute lung injury: Neutrophils, macrophages and inflammatory mediators. The British Journal of Surgery 79 (10): 998–1003.

    Article  CAS  PubMed  Google Scholar 

  8. Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D.S. Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science 303 (5663): 1532–1535.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, S., X. Su, P. Pan, L. Zhang, Y. Hu, H. Tan, D. Wu, et al. 2016. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Scientific Reports 6: 37252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fuchs, T.A., U. Abed, C. Goosmann, R. Hurwitz, I. Schulze, V. Wahn, Y. Weinrauch, V. Brinkmann, and A. Zychlinsky. 2007. Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology 176 (2): 231–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pilsczek, F.H., D. Salina, K.K. Poon, C. Fahey, B.G. Yipp, C.D. Sibley, S.M. Robbins, et al. 2010. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. Journal of Immunology 185 (12): 7413–7425.

    Article  CAS  Google Scholar 

  12. Zhang, L., J.S. Cardinal, P. Pan, B.R. Rosborough, Y. Chang, W. Yan, H. Huang, T.R. Billiar, M.R. Rosengart, and A. Tsung. 2012. Splenocyte apoptosis and autophagy is mediated by interferon regulatory factor 1 during murine endotoxemia. Shock 37 (5): 511–517.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, L., J.S. Cardinal, R. Bahar, J. Evankovich, H. Huang, G. Nace, T.R. Billiar, M.R. Rosengart, P. Pan, and A. Tsung. 2012. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Molecular Medicine 18: 201–208.

    Article  CAS  PubMed  Google Scholar 

  14. Pan, P.H., J. Cardinal, M.L. Li, C.P. Hu, and A. Tsung. 2013. Interferon regulatory factor-1 mediates the release of high mobility group box-1 in endotoxemia in mice. Chinese Medical Journal 126 (5): 918–924.

    CAS  PubMed  Google Scholar 

  15. Huang, H., S. Tohme, A.B. Al-Khafaji, S. Tai, P. Loughran, L. Chen, S. Wang, et al. 2015. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62 (2): 600–614.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, H.J., Y.K. Oh, M. Rhee, J.Y. Lim, J.Y. Hwang, Y.S. Park, Y. Kwon, K.H. Choi, I. Jo, S.I. Park, B. Gao, and W.H. Kim. 2007. The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by LPS/d-GalN. Journal of Molecular Biology 369 (4): 967–984.

    Article  CAS  PubMed  Google Scholar 

  17. Remijsen, Q., Berghe T. Vanden, E. Wirawan, B. Asselbergh, E. Parthoens, R. De Rycke, S. Noppen, M. Delforge, J. Willems, and P. Vandenabeele. 2011. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Research 21 (2): 290–304.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, D., P. Pan, X. Su, L. Zhang, Q. Qin, H. Tan, L. Huang, and Y. Li. 2016. Interferon regulatory Factor-1 mediates alveolar macrophage pyroptosis during LPS-induced acute lung injury in mice. Shock 46 (3): 329–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, D.D., S.J. Kao, and H.I. Chen. 2008. N-acetylcysteine attenuates acute lung injury induced by fat embolism. Critical Care Medicine 36 (2): 565–571.

    Article  CAS  PubMed  Google Scholar 

  20. Barth, C.R., G.A. Funchal, C. Luft, J.R. de Oliveira, B.N. Porto, and M.V. Donadio. 2016. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. European Journal of Immunology 46 (4): 964–970.

    Article  CAS  PubMed  Google Scholar 

  21. McGuigan, R.M., P. Mullenix, L.L. Norlund, D. Ward, M. Walts, and K. Azarow. 2003. Acute lung injury using oleic acid in the laboratory rat: Establishment of a working model and evidence against free radicals in the acute phase. Current Surgery 60 (4): 412–417.

    Article  PubMed  Google Scholar 

  22. Caudrillier, A., K. Kessenbrock, B.M. Gilliss, J.X. Nguyen, M.B. Marques, M. Monestier, P. Toy, Z. Werb, and M.R. Looney. 2012. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. The Journal of Clinical Investigation 122 (7): 2661–2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parker, H., M. Dragunow, M.B. Hampton, A.J. Kettle, and C.C. Winterbourn. 2012. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology 92 (4): 841–849.

    Article  CAS  PubMed  Google Scholar 

  24. Pieterse, E., N. Rother, C. Yanginlar, L.B. Hilbrands, and J. van der Vlag. 2016. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Frontiers in Immunology 7: 484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clark, S.R., A.C. Ma, S.A. Tavener, B. McDonald, Z. Goodarzi, M.M. Kelly, K.D. Patel, S. Chakrabarti, E. McAvoy, G.D. Sinclair, E.M. Keys, E. Allen-Vercoe, R. DeVinney, C.J. Doig, F.H.Y. Green, and P. Kubes. 2007. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine 13 (4): 463–469.

    Article  CAS  PubMed  Google Scholar 

  26. McDonald, B., R. Urrutia, B.G. Yipp, C.N. Jenne, and P. Kubes. 2012. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host & Microbe 12 (3): 324–333.

    Article  CAS  Google Scholar 

  27. Fan, J., Y. Li, R.M. Levy, J.J. Fan, D.J. Hackam, Y. Vodovotz, H. Yang, K.J. Tracey, T.R. Billiar, and M.A. Wilson. 2007. Hemorrhagic shock induces NAD (P) H oxidase activation in neutrophils: Role of HMGB1-TLR4 signaling. Journal of Immunology 178 (10): 6573–6580.

    Article  CAS  Google Scholar 

  28. Maugeri, N., L. Campana, M. Gavina, C. Covino, M. De Metrio, C. Panciroli, L. Maiuri, et al. 2014. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. Journal of Thrombosis and Haemostasis 12 (12): 2074–2088.

    Article  CAS  PubMed  Google Scholar 

  29. Merza, M., H. Hartman, M. Rahman, R. Hwaiz, E. Zhang, E. Renstrom, L. Luo, M. Morgelin, S. Regner, and H. Thorlacius. 2015. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 149 (7): 1920–1931.e1928.

    Article  CAS  PubMed  Google Scholar 

  30. Rochael, N.C., A.B. Guimaraes-Costa, M.T. Nascimento, T.S. DeSouza-Vieira, M.P. Oliveira, E. Souza LF Garcia, M.F. Oliveira, and E.M. Saraiva. 2015. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Scientific Reports 5: 18302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saffarzadeh, M., C. Juenemann, M.A. Queisser, G. Lochnit, G. Barreto, S.P. Galuska, J. Lohmeyer, and K.T. Preissner. 2012. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS One 7 (2): e32366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carestia, A., T. Kaufman, L. Rivadeneyra, V.I. Landoni, R.G. Pozner, S. Negrotto, L.P. D'Atri, R.M. Gomez, and M. Schattner. 2016. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. Journal of Leukocyte Biology 99 (1): 153–162.

    Article  CAS  PubMed  Google Scholar 

  33. Tadie, J.M., H.B. Bae, S. Jiang, D.W. Park, C.P. Bell, H. Yang, J.F. Pittet, K. Tracey, V.J. Thannickal, and E. Abraham. 2013. HMGB1 promotes neutrophil extracellular trap formation through interactions with toll-like receptor 4. American Journal of Physiology Lung Cellular and Molecular Physiology 304 (5): L342–L349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rossaint, J., J.M. Herter, H. Van Aken, M. Napirei, Y. Doring, C. Weber, O. Soehnlein, and A. Zarbock. 2014. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 123 (16): 2573–2584.

    Article  CAS  PubMed  Google Scholar 

  35. Etulain, J., K. Martinod, S.L. Wong, S.M. Cifuni, M. Schattner, and D.D. Wagner. 2015. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126 (2): 242–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sreeramkumar, Vinatha, José M. Adrover, Ivan Ballesteros, Maria Isabel Cuartero, Jan Rossaint, Izaskun Bilbao, Maria Nácher, Christophe Pitaval, Irena Radovanovic, and Yoshinori Fukui. 2014. Neutrophils scan for activated platelets to initiate inflammation. Science 346 (6214): 1234–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carestia, A., T. Kaufman, and M. Schattner. 2016. Platelets: New bricks in the building of neutrophil extracellular traps. Frontiers in Immunology 7: 271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kroger, A., M. Koster, K. Schroeder, H. Hauser, and P.P. Mueller. 2002. Activities of IRF-1. Journal of Interferon & Cytokine Research 22 (1): 5–14.

    Article  CAS  Google Scholar 

  39. Fujita, T., J. Sakakibara, Y. Sudo, M. Miyamoto, Y. Kimura, and T. Taniguchi. 1988. Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. The EMBO Journal 7 (11): 3397–3405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baas, T., J.K. Taubenberger, P.Y. Chong, P. Chui, and M.G. Katze. 2006. SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues. Journal of Interferon & Cytokine Research 26 (5): 309–317.

    Article  CAS  Google Scholar 

  41. Gao, J., M. Senthil, B. Ren, J. Yan, Q. Xing, J. Yu, L. Zhang, and J.H. Yim. 2010. IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death and Differentiation 17 (4): 699–709.

    Article  CAS  PubMed  Google Scholar 

  42. Lood, C., L.P. Blanco, M.M. Purmalek, C. Carmona-Rivera, S.S. De Ravin, C.K. Smith, H.L. Malech, J.A. Ledbetter, K.B. Elkon, and M.J. Kaplan. 2016. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nature Medicine 22 (2): 146–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (nos. 81770080 and 81470266).

Author information

Authors and Affiliations

Authors

Contributions

S.L. performed the experiments and drafted the manuscript; S.L., Y.Y., Y.L., Z.M., and H.L. analyzed the data; S.L. and X.S. interpreted the experimental results; L.Z. verified the pathological results; S.L., H.L., Q.L., and M.D. prepared the figures; P.P. conceived and designed the research; P.P. and L.Z. edited and revised the manuscript; P.P. approved the final version of manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pinhua Pan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yue, Y., Pan, P. et al. IRF-1 Intervention in the Classical ROS-Dependent Release of NETs during LPS-Induced Acute Lung Injury in Mice. Inflammation 42, 387–403 (2019). https://doi.org/10.1007/s10753-018-0903-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0903-7

KEY WORDS

Navigation