Skip to main content
Log in

Structural, Mössbauer and magnetic study of Co1-xZnxFe2O4 (x = 0.0 − 0.56) nano ferrites

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We report on the synthesis of spinel Co1-xZnxFe2O4 (x=0.0-0.56) ferrites by sol-gel auto-combustion method. X-ray diffraction ‘XRD’, magnetic measurements were used to study compositional-dependence of structural, magnetic properties, connection among them. Mössbauer spectroscopy was used to identify non-magnetic-phase, its effect on magnetic properties. Single-phased nano spinel-ferrite formation is confirmed by XRD. Increasing Zn-content leads to structural modifications such as decrease of lattice parameter, grain diameter DW-H, alteration of inversion parameter, disorder, tensile-strain, dislocation density, variation of A–O–B, A–O–A, B–O–B super-exchange-interaction and canting angles. Cationic distribution suggests that Fe3+,Co2+ ions reside on both A, B-sites, and with increasing Zn-content, B-site population of Fe3+, Zn2+ ions increases; while that of Co2+ ions decreases. Saturation magnetization shows noticeable dependence on canting angle suggests that the magnetization in the studied samples is described by Yafet-Kittel three-sub-lattice model. Coercivity Hc values are consistent with anisotropy, and its dependence on DW-H suggests that the studied samples are inoverlap-region between multiple-domains/single-domain. Reduced-remanence indicate the variation of inter-grain magnetostatic-interaction, isotropic-behavior of multi-domain particles. Observed broad peaks in magnetization derivative with field suggest large-number of dislocations, more-uniform particle-size. Switching-field-distribution proposes potential application of the studied x=0.0 sample in high density recording, and sample with x=0.56 in targeted drug delivery. Mössbauer measurements confirm three-magnetic-components corresponding to A,B-sites, Fe3+ ions in grain boundaries/surface, Fe has 3+ oxidation state, and growing paramagnetic-doublet, alone does not explain the trend of Ms, suggesting that it is a collective-effect of structural-modification, presence of paramagnetic-doublet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Smit, J., Wijn, H.P.J.: Ferrites, pp. 136–149. Philips Technical Library, Eindhoven p (1959)

    Google Scholar 

  2. Mathew, D.S., Juang, R.S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)

    Article  Google Scholar 

  3. Tiwari, P., Kane, S.N., Deshpande, U.P., Tatarchuk, T., Mazaleyrat, F., Rachiy, B.: Cr content dependent modification of structural, magnetic properties and bandgap in green synthesized Co–Cr nano-ferrites. Mol. Cryst. Liq. Cryst. 699, 39–50 (2020)

    Article  ADS  Google Scholar 

  4. Shiv, K.S., Singh, R.R., Barman, P.B.: Reitveld Refinement and Derivative Spectroscopy of Nanoparticles of Soft Ferrites (MgNiFe). J. Inorg. Organomet. Polym Mater. 31, 528–541 (2021)

    Article  Google Scholar 

  5. Dippong, T., Levei, E. A., Deac, I. G., Emilia Neag, E., Cadar, O: Influence of Cu2+, Ni2+, and Zn2+ Ions Doping on the Structure, Morphology, and Magnetic Properties of Co-Ferrite Embedded in SiO2 Matrix Obtained by an Innovative Sol-Gel Route. Nanomaterials 10,580–1 – 580–12 (2020)

  6. Parmar, C., Verma, R., Modak, S.S., Mazaleyrat, F., Kane, S.N.: Si9+ Ion-Irradiation Induced Modification of Structural and Magnetic Properties of Zn-Nanoferrite. ECS J. Solid State Sci. Technol. 11(053015–1), 053015–053019 (2022)

    Article  ADS  Google Scholar 

  7. Kane, S.N., Tiwari, P., Deepti, Verma, R., Deshpande, U.P., Mazaleyrat, F.: Study of structural, magnetic properties and bandgap of spinel Co1-xFe2+xO4 ferrite. Mater. Today Proc. 32, 358–364 (2020)

  8. Barrera, G., Coisson, M., Celegato, F., Raghuvanshi, S., Mazaleyrat, F., Kane, S.N., Tiberto, P.: Cation distribution effect on static and dynamic magnetic properties of Co1-xZnxFe2O4 ferrite powders. J. Magn. Magn. Mater. 456, 372–380 (2018)

    Article  ADS  Google Scholar 

  9. Tiwari, P., Verma, R., Modak, S. S., Reddy, V. R., Mazaleyrat, F., Kane, S. N.: 57Fe Mössbauer study of CoCrxFe2‑xO4 nano ferrite, Hyperfine Interactions 242, 51–1 – 51–15 (2021)

  10. Tiwari P., Verma, R, Modak S. S., Reddy V. R., Kane S. N.: In-field 57Fe Mössbauer study of MgxZn1-xFe2O4 prepared by green synthesis method, Hyperfine Interactions 243, 7–1 – 7–15 (2022)

  11. Da Silva, S.W., Nakagomi, F., Silva, M.S., Franco, A., Garg, V.K., Oliveira, A.C., Morais, P.C.: Effect of the Zn content in the structural and magnetic properties of ZnxMg1−xFe2O4 mixed ferrites monitored by Raman and Mossbauer spectroscopies. J. Appl. Phys. 107, 09B503–1–09B503–3 (2010)

  12. Mele N. G., Gamarra D. A., Zélis P. M., Sánchez F. H., PasquevichG. A.: Evaluation of Nanoparticle‑size distribution with Mössbauer Effect spectroscopy, Hyperfine Interactions 243, 18–1 – 18–13 (2022)

  13. Gonsalves L. R, Gawas S. G., MeenaS. S., Verenkar V. M. S.: Size variation and magnetic dilution effects on the structure and magnetic properties of cobalt zinc ferrite, J. Mater. Sci: Mater. Electron. 33, 20144–20161 (2022)

  14. Peddis D., Yaacoub N., Ferretti M., Martinelli A., Piccaluga G., Musinu A., Cannas C., Navarra G., Greneche J. M., Fiorani D.: Cationic distribution and spin canting in CoFe2O4 nanoparticles, J. Phys.: Condens. Matter 23, 426004–1 – 426004–8 (2011)

  15. Coey, J.M.D.: Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)

    Article  ADS  Google Scholar 

  16. Tronc, E., Prene, P., Jolivet, J.P., Dormann, J.L., Greneche, J.M.: Spin canting in Fe2O3. Hyperfine Interact. 112, 97–100 (1997)

    Article  ADS  Google Scholar 

  17. Chinnasamy C. N., Jeyadevan B., Shinoda K., Tohji K., Djayaprawira D. J., M. Takahashi M., Joseyphus R.J., Narayanasamy A.: Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles, , Appl. Phys. Lett. 83, 2862–2864 (2003)

  18. Veverka M., Jirák Z., Kaman O., Knízek K., Maryško M., Pollert E., Záveta K., Lancok A., Dlouhá M., Vratislav S.: Distribution of cations in nanosize and bulk Co–Zn ferrites, Nanotechnology. 22, 345701–1 − 34570 -7 (2011)

  19. Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys. 39, 1204–1205 (1968)

    Article  ADS  Google Scholar 

  20. Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S., Jeyadevan, B.: Co-Zn ferrite nanoparticles for ferrofluid preparation: Study on magnetic properties. Phys. B Condens. Matter. 363, 225–231 (2005)

    Article  ADS  Google Scholar 

  21. Arulmurugan, R., Jeyadevan, B., Vaidyanathan, G., Sendhilnathan, S.: Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by coprecipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)

    Article  ADS  Google Scholar 

  22. Veverka, M., Veverka, P., Jirak, Z., Kaman, O., Knızek, K., Marysko, M., Pollert, E., Zaveta, K.: Synthesis and magnetic properties of Co1-xZnxFe2O4+γ nanoparticles as materials for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 322, 2386–2389 (2010)

    Article  ADS  Google Scholar 

  23. Raghuvanshi S., Kane S. N., Tatarchuk T. R., Mazaleyrat F.: Effect of Zn Addition On Structural, Magnetic Properties, Antistructural Modeling Of Co1-xZnxFe2O4 Nano ferrite, AIP Conf. Proc. 1953, 030055–1 – 030055–4 (2018)

  24. Bertaut, E.F.: Etude de la nature des ferrites spinelles. Comptes Rendus Hebdomadaires des Seances de I’Academie des Sciences 230, 213–215 (1950)

    Google Scholar 

  25. Tanna, A.R., Joshi, H.H.: Computer Aided X-Ray Diffraction Intensity Analysis for Spinels: Hands-On Computing Experience. World Academy of Science, Engineering and Technology, International Journal of Physical and Mathematical Sciences 7(3), 334–341 (2013)

    Google Scholar 

  26. Brand, R.A.: Improving the validity of hyperfine field distributions from magnetic alloys: part I: Unpolarized source. Nucl. Instrum. Methods B. 28, 398–416 (1987)

    Article  ADS  Google Scholar 

  27. Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991)

    Article  ADS  Google Scholar 

  28. Zak A. K., Majid W.H. A, Abrishami M.E., Yousefi R.: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods, Solid State Sciences 13, 251–256 (2011)

  29. Hu J., Maa Y., Kan X., Liu C., Zhang X., Rao R., Wang M. Zheng G.: Investigations of Co substitution on the structural and magnetic properties of Ni-Zn spinel ferrite. Journal of Magnetism and Magnetic Materials 513, 167200–1 -167200–8 (2020)

  30. Vollath, D.: Nanoparticles – Nanocomposites –Nanomaterials An Introduction for Beginners, p. 30. Wiley-VCH Verlag, Weinheim (2013)

    Google Scholar 

  31. Tiwari P., Kane S.N., Verma R., Tatarchuk T., Mazaleyrat F., (Chapter 29) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications, Springer Proceedings in Physics, Springer International Publ. Co., part of Springer Nature 2019, Chapter 29, pp. 431–442, O. Fesenko, L. Yatsenko (eds.), Nanocomposites, Nanostructures, and Their Applications, Springer Proceedings in Physics 222

  32. Kolhatkar, A.G., Jamison, A.C., Litvinov, D., Willson, R.C., Randall Lee, T.: Tuning the Magnetic Properties of Nanoparticles. Int. J. Mol. Sci. 14, 15977–16009 (2013)

    Article  Google Scholar 

  33. Satya Murthy, N.S., Natera, M.G., Youssef, S.I., Begum, R.J., Srivastava, C.M.: Yafet-Kittel Angles in Zinc-Nickel Ferrites. Phys. Rev. 181, 969–977 (1969)

    Article  ADS  Google Scholar 

  34. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. 240, 599–642 (1948)

    Article  ADS  Google Scholar 

  35. Shirsath, S.E., Toksha, B.G., Jadhav, K.M.: Structural and magnetic properties of In3+ substituted NiFe2O4. Mater. Chem. Phys. 117, 163–168 (2009)

    Article  Google Scholar 

  36. Ateia, E.E., Ateia, M.A., Arman, M.M.: Assessing of channel structure and magnetic properties on heavy metal ions removal from water. J Mater Sci: Mater Electron 33, 8958–8969 (2022)

    Google Scholar 

  37. Kumar S., Barman P.B., Singh R. R.: Estimation and association of structural, elastic and magnetic properties of magnesium-nickel-ferrite nanoparticles annealed at different temperatures, Mater. Sci. Eng. B 272, 115362–1 - 115362–16 (2021)

  38. Muthuselvam, I.P., Bhowmik, R.N.: Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  ADS  Google Scholar 

  39. Jiles, D.: Introduction to Magnetism and Magnetic Materials. Chapman and Hall, New York (1991)

    Book  Google Scholar 

  40. Lodder, J.C.: Handbook of Magnetic Materials, chapter 2, Magnetic recording hard disk thin film media. Handb. Magn. Mater. 11, 291–405 (1998). https://doi.org/10.1016/S1567-2719(98)11006-5

    Article  Google Scholar 

  41. Chinnasamy C. N., Narayanasamy A., Ponpandian N., Chattopadhyay K, Shinoda K, Jeyadevan B., Tohji K., Nakatsuka K., Furubayashi T., Nakatani I.: Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B 63, 184108–1 – 184108–6 (2001)

Download references

Acknowledgements

Authors thank Dr. M. Gupta UGC-DAE CSR, Indore, for XRD measurements. SNK acknowledges gratefully for one month “Invited Professor” stay at ENS Paris-Saclay, Cachan (France). This work is supported by Seed money grant: No. Dev/Seedmoney2.0/2020-21/649, 20 Jan. 2022 of Devi Ahilya University, Indore (India).

Funding

This work is supported by Seed money grant: No. Dev/Seedmoney2.0/2020–21/649, 20 Jan. 2022 of Devi Ahilya University, Indore (India).

Author information

Authors and Affiliations

Authors

Contributions

S. N. Kane: Conceptualization, Supervision, Resources, preparation of samples, sample characterization, data analysis, writing manuscript.

R. Verma: Structural data analysis, manuscript writing.

S. S. Modak: XRD data analysis, manuscript writing.

V. R. Reddy: Mössbauer characterization, data analysis, writing manuscript.

F. Mazaleyrat: Magnetic measurements, data analysis, manuscript writing.

Corresponding author

Correspondence to S. N. Kane.

Ethics declarations

Ethical approval

The authors declare that the ethical standards are maintained while writing this manuscript.

Consent to participate

All authors voluntarily agree to participate in this study.

Consent for publication

All the authors have read, agreed to give their consent for publication of the current version of the submitted manuscript.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Symposium on the Industrial Applications of the Mössbauer Effect (ISIAME2022), Olomouc, Czech Republic

Edited by Libor Machala

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kane, S.N., Verma, R., Modak, S.S. et al. Structural, Mössbauer and magnetic study of Co1-xZnxFe2O4 (x = 0.0 − 0.56) nano ferrites. Hyperfine Interact 244, 3 (2023). https://doi.org/10.1007/s10751-022-01814-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-022-01814-1

Keywords

Navigation