Skip to main content

Advertisement

Log in

Redistribution of the lizardfish Harpadon nehereus in coastal waters of China due to climate change

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Climate change has the potential to greatly alter species distributions and threatens biodiversity in marine ecosystems. Mapping changes in species distribution patterns under climate change will help facilitate management strategies to maintain ecosystem structure and function. The lizardfish Harpadon nehereus is an aggressive predator that has experienced rapid population growth along the coast of China in recent decades, compressing the ecological niches of other marine species and disrupting food webs. If this species’ range is shifting due to climate change, it could further impact the integrity of ecological communities. To map the distribution of H. nehereus, we developed an ensemble species distribution model and projected the present and future habitat suitability in Chinese coastal waters. Annual mean benthic water temperature was identified as the most important variable affecting the projected distribution of H. nehereus, followed by water depth and salinity. Currently suitable habitats are along the coast from Guangxi Province to the southern Jiangsu Province. As climate changes, the southern portion of its distribution is predicted to recede with habitat losses, and the overall suitable habitat will shift northward. To avoid the potential impacts of H. nehereus redistribution, precautionary management based on species distribution modeling would help to maintain healthy marine ecosystems in the newly invaded areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Allouche, O., A. Tsoar & R. Kadmon, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223-1232.

    Article  Google Scholar 

  • Amin, S. M., 2001. Studies on age and growth, VPA analysis and relative condition factor of Harpodon nehereus (Ham-Buch) from the Neritic Water of Bangladesh. Journal of Biological Sciences 1: 192-194.

    Article  Google Scholar 

  • Araujo, M. B., R. G. Pearson, W. Thuiller & M. Erhard, 2005. Validation of species-climate impact models under climate change. Global Change Biology 11: 1504-1513.

    Article  Google Scholar 

  • Assis, J., L. Tyberghein, S. Bosch, H. Verbruggen, E. A. Serrão & O. De Clerck, 2018. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography 27: 277-284.

    Article  Google Scholar 

  • Banerjee, A. K., N. E. Harms, A. Mukherjee & J. F. Gaskin, 2020. Niche dynamics and potential distribution of Butomus umbellatus under current and future climate scenarios in North America. Hydrobiologia, 847: 1505-1520.

    Article  Google Scholar 

  • Bapat, S. V., 1970. The Bombay duck, Harpodon nehereus (Ham.). Bulletin of the Central Marine fisheries Research Institute 21: 1-87.

    Google Scholar 

  • Basher, Z., D. A. Bowden & M. J. Costello. (2014). Global marine environment dataset (GMED) Version 1.0 (Rev. 01.2014).

  • Belkin, I. M., 2009. Rapid warming of Large Marine Ecosystems. Progress in Oceanography 81: 207-213.

    Article  Google Scholar 

  • Boria, R. A., L. E. Olson, S. M. Goodman & R. P. Anderson, 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275: 73-77.

    Article  Google Scholar 

  • Bosch, S., L. Tyberghein, K. Deneudt, F. Hernandez & O. De Clerck, 2018. In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Diversity and Distributions 24: 144-157.

    Article  Google Scholar 

  • Byrne, M., M. Gall, K. Wolfe & A. Agüera, 2016. From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean. Global Change Biology 22: 3874-3887.

    Article  PubMed  Google Scholar 

  • Cao, L., R. Naylor, P. Henriksson, D. Leadbitter, M. Metian, M. Troell, & W. Zhang, 2015. China's aquaculture and the world's wild fisheries. Science 347: 133-135.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, W. W. L., V. W. Y. Lam, J. L. Sarmiento, K. Kearney, R. Watson & D. Pauly, 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10: 235-251.

    Article  Google Scholar 

  • Chown, S. L., B. J. Sinclair & B. J. van Vuuren, 2008. DNA barcoding and the documentation of alien species establishment on sub-Antarctic Marion Island. Polar Biology 31: 651-655.

    Article  Google Scholar 

  • Crickenberger, S. 2016. Predicting a range shift and range limits in an introduced tropical marine invertebrate using species distribution models. Hydrobiologia, 763: 193-205.

    Article  Google Scholar 

  • Dong, J. Y., C. Y. Hu, X. M. Zhang, X. Sun, P. D. Zhang & W. T. Li, 2020. Selection of aquaculture sites by using an ensemble model method: a case study of Ruditapes philippinarums in Moon Lake. Aquaculture 519: 734897.

    Article  Google Scholar 

  • Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. Reineking, B. Schröder, A. K. Skidmore, D. Zurell & S. Lautenbach, 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27-46.

    Article  Google Scholar 

  • Du, J. G., B. Chen, Z. B. Lu & P. Q. Song, 2010. Changes of fish diversity and trophic levels in Quanzhou Bay. Biodiversity Science 18: 420-427 (in Chinese).

    Article  Google Scholar 

  • Du, X. X., 2018. Biological characteristics and spatial distribution patter of Harpodon nehereus in offshore water of southern Zhejiang., Shanghai Ocean University, Shanghai (Master Thesis, in Chinese).

  • Du, X. X., C. X. Gao, S. Q. Tian, W. C. Liu, J. Q. Wang & S. Ye, 2018. Growth, mortality and optimum catchable size of Bombay duck (Harpadon nehereus) in the Wentai fishing ground, East China Sea. Journal of Fisheries of China 42: 1550-1558 (in Chinese).

    Google Scholar 

  • Faleiro, F. V., A. Nemésio & R. Loyola, 2018. Climate change likely to reduce orchid bee abundance even in climatic suitable sites. Global Change Biology 24: 2272-2283.

    Article  PubMed  Google Scholar 

  • FAO, 2016. Fishery and aquaculture statistics. Rome: Food and Agriculture Organization of the United Nation.

    Google Scholar 

  • Fielding, A. H. & J. F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38-49.

    Article  Google Scholar 

  • Franklin, J., 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Froese, R. & D. Pauly., 2019. Fishbase. World Wide Web Electronic Publication. Available online at: http://www.fishbase.org (accessed October 2020).

  • Gallien, L., R. Douzet, S. Pratte, N. E. Zimmermann & W. Thuiller, 2012. Invasive species distribution models - how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography 21: 1126-1136.

    Article  Google Scholar 

  • GBIF. org. GBIF Occurrence Download. Available online at: https://doi.org/10.15468/dl.yguymg (accessed October 2020).

  • Gerringer, M. E., T. D. Linley, A. J. Jamieson, E. Goetze & J. C. Drazen, 2017. Pseudoliparis swirei sp. nov.: A newly-discovered hadal snailfish (Scorpaeniformes: Liparidae) from the Mariana Trench. Zootaxa 4358: 161-177.

    Article  PubMed  Google Scholar 

  • Goldsmit, J., P. Archambault, G. Chust, E. Villarino, G. Liu, J. V. Lukovich, D. G. Barber & K. L. Howland, 2018. Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic. Biological Invasions 20: 501-517.

    Article  Google Scholar 

  • Guan, W., J. J. Chen & Z. L. Xu, 2016. The distribution and seasonal variation of fish populations in the southwest waters of the Nanri Islands and their relationships with the variation of water masses. Journal of Tropical Oceanography 35: 65-71 (in Chinese).

    Google Scholar 

  • Guisan, A., W. Thuiller & C. Zimmermann., 2017. Habitat suitability and distribution models: with applications in R. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • He, X., J. Li, C. Shen, Y. Shi, C. Feng, J. Guo, Y. Yan & B. Kang, 2019. Length-weight relationship and population dynamics of Bombay duck (Harpadon nehereus) in the Min River Estuary, East China Sea. Thalassas 35: 253-261.

    Article  Google Scholar 

  • Hijmans, R. J., 2012. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93: 679-688.

    Article  PubMed  Google Scholar 

  • IPCC, 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

  • Jorgensen, N., J. Leary, M. Renz & B. Mahnken, 2021. Characterizing the suitable habitat of Miconia calvescens in the East Maui Watershed. Management of Biological Invasions 12: 313-330.

    Article  Google Scholar 

  • Joseph, M. M. & A. A. Jayaprakash, 2003. Status of exploited marine fishery resources of India. Central Marine Fisheries Research Institute, Kochi, India.

  • Kalhoro, M. A., Q. Liu, K. H. Memon, M. S. Chang & A. N. Jatt, 2013. Estimation of maximum sustainable yield of Bombay Duck, Harpodon nehereus fishery in Pakistan using the CEDA and ASPIC packages. Pakistan Journal of Zoology 45: 1757-1764.

    Google Scholar 

  • Khan, M. Z., 1989. Population dynamics of the Bombay duck, Harpodon nehereus (Ham.), off Saurashtra coast. Indian Journal of Fisheries 36: 93-101.

    Google Scholar 

  • Kitchell, J. F., D. E. Schindler, R. Ogutu-Ohwayo & P. N. Reinthal, 1997. The Nile perch in Lake Victoria: interactions between predation and fisheries. Ecological Applications 7: 653-664.

    Article  Google Scholar 

  • Kroeker, K. J., R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte & J. Gattuso, 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884-1896.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurian, A., 1989. Application of synthetic models for the assessment of Bombay duck, Harpodon nehereus (Ham.) stock off the Maharashtra coast. Indian Journal of Fisheries 36: 275-283.

    Google Scholar 

  • Lezama-Ochoa, N., H. Murua, G. Chust, E. Van Loon, J. Ruiz, M. Hall, P. Chavance, A. Delgado De Molina & E. Villarino, 2016. Present and Future Potential Habitat Distribution of Carcharhinus falciformis and Canthidermis maculata By-Catch Species in the Tropical Tuna Purse-Seine Fishery under Climate Change. Frontiers in Marine Science 3: 34.

    Article  Google Scholar 

  • Lin, L. S., 2009. Spatial distribution and environmental characteristics of Harpodon nehereus in the East China Sea region. Journal of Shanghai Ocean University 18: 66-71 (in Chinese).

    Google Scholar 

  • Lin, X. P., Z. J. Zhu & P. F. Li, 2010. Feeding habits of Harpodon nehereus in the East China Sea region. Marine Fisheries 32: 290-296 (in Chinese).

    Google Scholar 

  • Liu, R., 2011. Progress of marine biodiversity studies in China seas. Biodiversity Science 19: 614-626 (in Chinese).

    CAS  Google Scholar 

  • Lowe, C. B., M. Kellis, A. Siepel, B. J. Raney, M. Clamp, S. R. Salama, D. M. Kingsley, K. Lindblad-Toh & D. Haussler, 2011. Three Periods of Regulatory Innovation During Vertebrate Evolution. Science 333: 1019-1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, H. D., 2012. Study of main biology character and analysis of resources status on the Harpodon nehereus., Zhejiang Ocean University, Zhoushan (Master Thesis, in Chinese).

  • Maeaono, Y., R. Kobayashi, M. Kusahara & T. Miyashita, 2005. Direct and indirect effects of exotic bass and bluegill on exotic and native organisms in farm ponds. Ecological Applications 15: 638-650.

    Article  Google Scholar 

  • Martínez, B., B. Radford, M. S. Thomsen, S. D. Connell, F. Carreño, C. J. A. Bradshaw, D. A. Fordham, B. D. Russell, C. F. D. Gurgel & T. Wernberg, 2018. Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Diversity and Distributions 24: 1350-1366.

    Article  Google Scholar 

  • Melo-Merino, S. M., H. Reyes-Bonilla & A. Lira-Noriega, 2020. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling 415: 108837.

    Article  Google Scholar 

  • Ministry of Agriculture of China, 2016. China Fishery Statistical Yearbook. China Agriculture Press, Beijing, China.

    Google Scholar 

  • Nakata, K. & S. Goshima, 2003. Competition for shelter of preferred sizes between the native crayfish species Cambaroides japonicus and the alien crayfish species Pacifastacus leniusculus in Japan in relation to prior residence, sex difference, and body size. Journal of Crustacean Biology 23: 897-907.

    Article  Google Scholar 

  • Nooralabettu, K. P., 2008. Effect of sun drying and artificial drying of fresh, salted Bombay Duck (Harpodon nehereus) on the physical characteristics of the product. Journal of Aquatic Food Product Technology 17: 99-116.

    Article  Google Scholar 

  • Nye, J. A., J. S. Link, J. Hare & W. J. Overholtz, 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United Sates continental shelf. Marine Ecology Progress Series 393: 111-129.

    Article  Google Scholar 

  • Pan, X. W., 2011. The primary study on biology of Harpadon nehereus in the East China Sea., Shanghai Ocean University, Shanghai (Master Thesis, in Chinese).

  • Pazhayamadom, D. G., S. K. Chakraborty, A. K. Jaiswar, D. Sudheesan, A. M. Sajina & S. Jahageerdar, 2015. Stock structure analysis of "Bombay duck" (Harpadon nehereus Hamilton, 1822) along the Indian coast using truss network morphometrics. Journal of Applied Ichthyology 31: 37-44.

    Article  Google Scholar 

  • Perry, A. L., P. J. Low, J. R. Ellis & J. D. Reynolds, 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912-1915.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, A. T., M. Papes & J. Soberón, 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213: 63-72.

    Article  Google Scholar 

  • Petsch, D. K., L. G. D. S. Ribas, T. Mantovano, M. M. Pulzatto, A. T. Alves, G. D. Pinha & S. M. Thomaz, 2020. Invasive potential of golden and zebra mussels in present and future climatic scenarios in the new world. Hydrobiologia.

    Article  Google Scholar 

  • Pineda, M. C., C. D. McQuaid, X. Turon, S. López-Legentil, V. Ordóñez & M. Rius, 2012. Tough adults, frail babies: an analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS ONE 7: e46672.

  • R Development Core Team, 2020. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, Vienna, Austria.

  • Raj, B. S., 1954. The problem of the apparent discontinuous distribution of Harpodon nehereus (Hamilton). Proceedings of the Indian Academy of Sciences-Section B 40: 58-68.

    Article  Google Scholar 

  • Rius, M., S. Clusella-Trullas, C. D. McQuaid, R. A. Navarro, C. L. Griffiths, C. A. Matthee, S. von der Heyden & X. Turon, 2014. Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. Global Ecology and Biogeography 23: 76-88.

    Article  Google Scholar 

  • Roy, V. C., M. Kamal, M. Faridullah, S. A. Haque & M. S. Reza, 2014. Influence of salt and herbal substance on the drying and reconstitution performance of Bombay duck, Harpodon nehereus. Journal of Fisheries 2: 59-63.

    Article  Google Scholar 

  • Sarker, M. N., M. Humayun, M. A. Rahman & M. S. Uddin, 2017. Population dynamics of Bombay duck Harpodon nehereus (Hamilton, 1822) of the Bay of Bengal along Bangladesh coast. Bangladesh Journal of Zoology 45: 101-110.

    Article  Google Scholar 

  • Shelford, V. E., 1911. Physiological animal geography. Journal of Morphology 22: 551-618.

    Article  Google Scholar 

  • Simberloff, D., J. L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. Garcia-Berthou, M. Pascal, P. Pysek, R. Sousa, E. Tabacchi & M. Vila, 2013. Impacts of biological invasions: what's what and the way forward. Trends in Ecology & Evolution 28: 58-66.

    Article  Google Scholar 

  • Spencer, P. D., 2008. Density-independent and density-dependent factors affecting temporal changes in spatial distributions of eastern Bering Sea flatfish. Fisheries Oceanography 17: 396-410.

    Article  Google Scholar 

  • Sun, P., F. Dai, Y. Chen, X. Shan & X. Jin, 2015. Seasonal variations in structure of fishery resource in the Yangtze River Estuary and its adjacent waters. Progress in Fishery Sciences 36: 8-16 (in Chinese).

    Google Scholar 

  • Tanaka, K. R., M. P. Torre, V. S. Saba, C. A. Stock & Y. Chen, 2020. An ensemble high-resolution projection of changes in the future habitat of American lobster and sea scallop in the Northeast US continental shelf. Diversity and Distributions 26: 987-1001.

    Article  Google Scholar 

  • Thuiller, W., B. Lafourcade, R. Engler & M. B. Araújo, 2009. BIOMOD - a platform for ensemble forecasting of species distributions. Ecography 32: 369-373.

    Article  Google Scholar 

  • Thuiller, W., D. Georges, R. Engler & F. Breiner, 2019. biomod2: ensemble platform for species distribution modeling. R package version 3.3.7.

    Google Scholar 

  • Tyberghein, L., H. Verbruggen, K. Pauly, C. Troupin, F. Mineur & O. De Clerck, 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21: 272-281.

    Article  Google Scholar 

  • Varela, S., R. P. Anderson, R. García-Valdés & F. Fernández-González, 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37: 1084-1091.

    Google Scholar 

  • Wei, S. & W. M. Jiang, 1992. Study on food web of fishes in the Yellow Sea. Oceanologia et Limnologia Sinica 23: 182-192 (in Chinese).

    Google Scholar 

  • Yan, L. N., S. Ye, D. W. Li & Q. S. Zhou, 2013. Species composition and quantitative distribution of fishes in Spring and Autumn in the Yueqing Bay mouth. Oceanologia et Limnologia Sinica 44: 1062-1067 (in Chinese).

    Google Scholar 

  • Yuan, H. R., P. M. Chen, C. X. Qin, X. G. Li, Y. B. Zhou, X. Feng & J. Yu, 2017. Seasonal variation of fish community structure in Zhelin Bay, the South China Sea. South China Fisheries Science, 13: 26-35 (in Chinese).

    Google Scholar 

  • Zhang, W., M. Liu, Y. Sadovy De Mitcheson, L. Cao, D. Leadbitter, R. Newton, D. C. Little, S. Li, Y. Yang, X. Chen & W. Zhou, 2019a. Fishing for feed in China: facts, impacts and implications. Fish and Fisheries 21: 47-62.

    Article  CAS  Google Scholar 

  • Zhang, Z., S. Xu, C. Capinha, R. Weterings & T. Gao, 2019b. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecological Indicators 104: 333-340.

    Article  Google Scholar 

  • Zhang, Z., C. Capinha, D. N. Karger, X. Turon, H. J. MacIsaac & A. Zhan, 2020. Impacts of climate change on geographical distributions of invasive ascidians. Marine Environmental Research 159: 104993.

Download references

Acknowledgements

This study was supported by the National Nature Science Foundation of China (Grant Number 41976091), the Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang Bay Laboratory (Grant Number ZJW–2019–08), Fundamental Research Funds for the Central Universities (Grant Number 202012023), and the National Program on Global Change and Air-Sea Interaction (Grant Number GASI-02-PAC-YDaut).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, investigation, resources, writing – original draft, writing – review, and editing: LW. Data curation, investigation: ZZ, LL, XP, LL. Supervision, project administration, funding acquisition, conceptualization, methodology, resources, writing–review and editing: BK.

Corresponding author

Correspondence to Bin Kang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling editor: Stuart Halse

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Z., Lin, L. et al. Redistribution of the lizardfish Harpadon nehereus in coastal waters of China due to climate change. Hydrobiologia 848, 4919–4932 (2021). https://doi.org/10.1007/s10750-021-04682-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04682-y

Keywords

Navigation