Skip to main content

Advertisement

Log in

The role of mechanotransduction in heart failure pathobiology—a concise review

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

This review evaluates the role of mechanotransduction (MT) in heart failure (HF) pathobiology. Cardiac functional and structural modifications are regulated by biomechanical forces. Exposing cardiomyocytes and the myocardial tissue to altered biomechanical stress precipitates changes in the end-diastolic wall stress (EDWS). Thereby various interconnected biomolecular pathways, essentially mediated and orchestrated by MT, are launched and jointly contribute to adapt and remodel the myocardium. This cardiac MT-mediated feedback decisively determines the primary cardiac cellular and tissue response, the sort (concentric or eccentric) of hypertrophy/remodeling, to mechanical and/or hemodynamic alterations. Moreover, the altered EDWS affects the diastolic myocardial properties independent of the systolic function, and elevated EDWS causes diastolic dysfunction. The close interconnection between MT pathways and the cell nucleus, the genetic endowment, principally allows for the wide variety of phenotypic appearances. However, demographic, environmental features, comorbidities, and also the genetic make-up may modulate the phenotypic result. Cardiac MT takes a fundamental and superordinate position in the myocardial adaptation and remodeling processes in all HF categories and phenotypes. Therefore, the effects of MT should be integrated in all our scientific, clinical, and therapeutic considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Fibrotic tissue replaces specific myocardial tissue (replacement fibrosis) if myocardial tissue is lost (notably if necrotic) such as in case of myocardial infarction, myocarditis, etc. [Herum K (2017) J Clin Invest 6, 53; doi:https://doi.org/10.3390/jcm6050053]. Reactive myocardial fibrosis occurs as an accompanying process in case of hypertrophic (eccentric and concentric) remodeling [Weber KT (2013) Nat Rev. Cardiol 10: 15–26; Herum K (2017) J Clin Invest 6, 53; doi:https://doi.org/10.3390/jcm6050053]. However, there is a very strong interconnection and coupling between any inflammatory activity and pro-fibrotic pathways in response to any threat the organism is exposed to [Chen L (2018) Oncotarget 9: 7204–7218; Chen L (2017) Nat Immunol 18: 825].

  2. The term remodeling describes all cardiac molecular, cellular, tissue, and geometrical changes displayed in response to any bio-physical stress the heart is exposed to, which collectively form and determine the modified, adapted heart structure and function [Omens JJ (2007). In: Cardiac mechanotransduction by Tavi and Weckstroem. New York: Springer Science and Business Media, chapter 5, pp. 78–92; Cohn JN (2000) J Am Coll Cardiol 35: 596–582].

  3. Myocardial stiffness, basically referring to “material properties” of the cardiac tissue (namely the cardiomyocytes and of the extracellular matrix) [Chaturvedi RR et al. (2010) Circulation 121: 979–988], and chamber stiffness need to be thoroughly distinguished [Gaasch WH et al. (1982) Eur Heart J 3 (Suppl A): A 139 – A 145].

  4. Natriuretic peptides take adaptive measures by promoting natriuresis and diuresis, inhibiting the sympathetic nervous system and renin-angiotensin-aldosterone activity, and display an arterial vasodilatory effect [Adams jr KF (2003) Am Heart J 145: S 34–S 46]. As such, natriuretic peptides counteract the neurohumoral systems.

  5. BNP is a load-indiced cardiomyocyte specific marker of modified gene expression [Meluzin J, Tomandl, J (2015) Hindawi Volume 2015, Article ID 426045, 9 pages].

References

  1. Savarese GI, Lund LH (2017) Global public health burden of heart failure. Cardiac Failure Review 3:7–11

    PubMed  PubMed Central  Google Scholar 

  2. Mensah GA, Wei GS, Sorlie PD et al (2017) Decline in cardiovascular mortality: possible causes and implications. Circ Res 120:366–380

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Conrad N, Judge A, Tran J, Mohseni H, Hedgecott D, Crespillo AP, Allison M, Hemingway H, Cleland JG, McMurray J, Rahimi K (2018) Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391:572–580

    PubMed  PubMed Central  Google Scholar 

  4. Damman K, Tang WH, Felker GM, Lassus J, Zannad F, Krum H, McMurray J (2014) Current evidence on treatment of patients with chronic systolic heart failure and renal insufficiency: practical considerations from published data. J Am Coll Cardiol 63:853–871

    PubMed  Google Scholar 

  5. Konstam MA, Abboud FM (2017) Ejection fraction: misunderstood and overrated (changing the paradigm in categorizing heart failure). Circulation 135:717–719

    PubMed  PubMed Central  Google Scholar 

  6. Najjar SS (2009) Heart failure with preserved ejection fraction: failure to preserve, failure of reserve, and failure on the compliance curve. J Am Coll Cardiol 54:419–421

    PubMed  PubMed Central  Google Scholar 

  7. Reichek N, Wilson J, St. John M et al (1982) Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 65:99–108

    CAS  PubMed  Google Scholar 

  8. Ponikowsky P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Google Scholar 

  9. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride P, McMurray J, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 128:1810–1852

    PubMed  Google Scholar 

  10. Sanders-van Wijk S, van Empel V, Davarzani N, Maeder MT, Handschin R, Pfisterer ME, Brunner-la Rocca HP, TIME-CHF investigators (2015) Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs reduced left vebtricular ejection fraction. Eur J Heart Fail 17:1006–1014

    CAS  PubMed  Google Scholar 

  11. Tromp J, Westenbrink BD, Ouwerkerk W, van Veldhuisen D, Samani NJ, Ponikowski P, Metra M, Anker SD, Cleland JG, Dickstein K, Filippatos G, van der Harst P, Lang CC, Ng LL, Zannad F, Zwinderman AH, Hillege HL, van der Meer P, Voors AA (2018) Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 72:1081–1090

    CAS  PubMed  Google Scholar 

  12. Zile MR, Baicu CF (2013) Biomarkers of diastolic dysfunction and myocardial fibrosis: application to heart failure with a preserved ejection fraction. J Cardiovasc Transl Res 6:501–515

    PubMed  Google Scholar 

  13. Borlaug BA, Redfield MM (2011) Diastolic and systolic heart failure are distinct phenotypes of the heart failure syndrome. Circulation 123:2006–2014

    PubMed  PubMed Central  Google Scholar 

  14. Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271

    PubMed  Google Scholar 

  15. Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11:507–515

    CAS  PubMed  Google Scholar 

  16. Van Heerebeek L, Borbély A, Niessen HW et al (2006) Myocxardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973

    PubMed  Google Scholar 

  17. Rodrigues PG, Leite-Moreira AF, Falcão-Pires I (2016) Myocardial reverse remodeling: how far can we rewind Am J Physiol heart Circ Physiol 310: H 1402 - H 1422

  18. Van Linthout S, Tschoepe C (2017) Inflammation—cause or consequence of heart failure or both? Curr Heart Fail Rep 14:251–265

    PubMed  PubMed Central  Google Scholar 

  19. Triposkiadis F, Butler J, Abboud FM, Armstrong PW, Adamopoulos S, Atherton JJ, Backs J, Bauersachs J, Burkhoff D, Bonow RO, Chopra VK, de Boer RA, de Windt L, Hamdani N, Hasenfuss G, Heymans S, Hulot JS, Konstam M, Lee RT, Linke WA, Lunde IG, Lyon AR, Maack C, Mann DL, Mebazaa A, Mentz RJ, Nihoyannopoulos P, Papp Z, Parissis J, Pedrazzini T, Rosano G, Rouleau J, Seferovic PM, Shah AM, Starling RC, Tocchetti CG, Trochu JN, Thum T, Zannad F, Brutsaert DL, Segers VF, de Keulenaer GW (2019) The continous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J 40:2155–2163

    PubMed  PubMed Central  Google Scholar 

  20. Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S, Reuter SP, Becker A, Teucher N, Seidler T, Grebe C, Preuss L, Gupta SN, Schmidt K, Lehnart SE, Krüger M, Linke WA, Backs J, Regitz-Zagrosek V, Schäfer K, Field LJ, Maier LS, Hasenfuss G (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122:993–1003

    PubMed  PubMed Central  Google Scholar 

  21. Swynghedaue B (2016) Evolutionary paradigms in cardiology: the case of chronic heart failure. In: Alvergne S, Jenkins C, Fauri C (eds) Evolutionary thinking in medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer Intern Publishing, Switzerland, pp 137–153

    Google Scholar 

  22. Ingber DE (2003) Mechanobiology and diseases of machanotransduction. Ann Med 35:1–14

    Google Scholar 

  23. Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    CAS  PubMed  Google Scholar 

  24. Ingber DE (1997) The architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    CAS  PubMed  Google Scholar 

  25. Voorhees AP, Han H-C (2016) Biomechanics of cardiac function. Compr Physiol 5:1623–1644

    Google Scholar 

  26. Herum KM, Lunde IG, McCulloch AD, Christensen G (2017) The soft- and hard-heartedness of cardiac fibroblasts: Mechanotransduction signaling pathways in fibrosis of the heart. J Clin Med 6:53

    PubMed Central  Google Scholar 

  27. Knöll R, Hoshijima M, Chien K (2003) Cardiac mechanotransduction and implications for heart disease. J Mol Med 81:750–756

    PubMed  Google Scholar 

  28. Maksuti E, Westerhof BE, Ugander M, Donker DW, Carlsson M, Broomé M (2019) Cardiac remodeling in aortic and mitral valve disease - a simulation study with clinical validation. J Appl Physiol 126:1377–1389

    PubMed  Google Scholar 

  29. Kim KH, Kim HM, Park JS, Kim YJ (2019) Differential Transcriptome profile and exercise capacity in cardiac remodeling by pressure overload versus volume overload. J Cardiovasc Imaging 27:50–63

    PubMed  PubMed Central  Google Scholar 

  30. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerdes AM, Campbell SE, Hilbelink DR (1988) Structural remodelling of cardiac myocytes in rats with arteriovenous fistula. Lab Investig 59:857–861

    CAS  PubMed  Google Scholar 

  32. Mann DL, Bogaev R, Buckberg GD (2010) Cardiac remodelling and myocardial recovery: lost in translation? Eur J Heart Fail 12:789–796

    PubMed  Google Scholar 

  33. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    CAS  PubMed  Google Scholar 

  34. Vega ER, Konhilas JP, Kelly DP, Leinwand LA (2017) Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metabol 25:1012–1026

    CAS  Google Scholar 

  35. Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, McKeown P, Schocken DD (1992) Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86:426–430

    CAS  PubMed  Google Scholar 

  36. Gori M, Iacovoni A, Senni M (2016) Hemodynamics of heart failure with preserved ejection fraction: a clinical perspective. Cardiac Fail Rev 2:102–105

    Google Scholar 

  37. Kvakan H, Kleinewietfeld M, Qadri F, Park JK, Fischer R, Schwarz I, Rahn HP, Plehm R, Wellner M, Elitok S, Gratze P, Dechend R, Luft FC, Muller DN (2009) Regulatory T cells ameliorate angiotensin II–induced cardiac damage. Circulation 119:2904–2912

    CAS  PubMed  Google Scholar 

  38. Anaversa P, Ricci R, Olivetti G (1986) Quantitative structural analysis of the myocardium during physiological growth and induced cardiac hypertrophy: a review. J Am Coll Cardiol 7:1140–1149

    Google Scholar 

  39. Tavi P, Laine M, Weckström M, Ruskoaho H (2001) Cardiac mechanotransduction: from sensing to disease and treatment. Trend Phram Sci 55:254–260

    Google Scholar 

  40. Grossman W, Paulus WJ (2013) Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling. J Clin Invest 123:3701–3703

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, Vargiu P, Simongini I, Laragh JH (1992) Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 19:1550–1558

    CAS  PubMed  Google Scholar 

  42. Nadruz W (2015) Myocardial remodeling in hypertension. J Hum Hypertens 29:1–6

    CAS  PubMed  Google Scholar 

  43. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959

    CAS  PubMed  Google Scholar 

  44. Chien KR (1999) Stress pathways and heart failure. Cell 98:555–558

    CAS  PubMed  Google Scholar 

  45. Omens JH, McCulloch AD, Lorenzen-Schmidt I (2007) Mechanotransduction in cardiac remodeling and heart failure. In: Weckström M, Tavi P cardiac mehanotransduction. Springer Science and Business Media, New York, chapter 5:78–92

    Google Scholar 

  46. Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276–1283

    CAS  PubMed  Google Scholar 

  47. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, Goto Y, Nonogi H (2006) B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol 47:742–748

    CAS  PubMed  Google Scholar 

  48. Bansal M, Marwick TH (2008) Natriuretic peptides and filling pressure at rest and stress. Heart Fail Clin 4:71–86

    PubMed  Google Scholar 

  49. Burkhoff D, Mirsky I, Suga H (2005) Assessment of systolic and diastolic ventricular properties via pressurevolume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol 289: H 501 - H 512

  50. Fukuta H, Little WC (2008) The cardiac cycle and the pathophysiological basis of left ventricular contraction, ejection, relaxation, and filling. Heart Fail Clin 4:1–11

    PubMed  PubMed Central  Google Scholar 

  51. Kerkhof PLM (2015) Characterizing heart failure in the ventricular volume domain. Clin Med Insights Cardiol 9(Suppl 1):11–31

    PubMed  PubMed Central  Google Scholar 

  52. Mihl C, Dassen WRM, Kuipers H (2008) Cardiac remodeling versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J 16:129–133

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Beisvag V, Kemi OJ, Arbo I (2009) Pathological and physiological hypertrophies are regulated by distinct gene programs. Eur J Cardiovasc Prev Rehabil 16:690–697

    PubMed  Google Scholar 

  54. Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH, Wahlers T, Weymann A (2016) Cardiac hypertrophy: an introduction to molecular and cellular basis. Med Sci Monit Basic Res 22:75–79

    PubMed  PubMed Central  Google Scholar 

  55. Swynghedauw B (1999) Molecular mechnaisms of myocardial remodeling. Physiol Rev 79:215–262

    CAS  PubMed  Google Scholar 

  56. Chien KR, Zhu H, Knowlton KU, Miller-Hance W, van-Bilsen M, O'Brien TX, Evans SM (1993) Transcriptional regulation during cardiac growth and development. Annu Rev Physiol 55:77–95

    CAS  PubMed  Google Scholar 

  57. Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program. Ann N Y Acad Sci 1188:191–198

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mann DL (2014) The evolution of modern theory and therapy for heart failure. Prog Pediatr Cardiol 37:9–12

    Google Scholar 

  59. Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849

    PubMed  Google Scholar 

  60. Hartupee J, Mann DL (2017) Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 14:30–38

    CAS  PubMed  Google Scholar 

  61. Wachtell K, Smith G, Gerdts E, Dahlöf B, Nieminen MS, Papademetriou V, Bella JN, Ibsen H, Rokkedal J, Devereux RB (2000) Left ventricular filling patterns in patients with systemic hypertension and left ventricular hypertrophy (the LIFE study). Losartan intervention for endpoint. Am J Cardiol 85:466–472

    CAS  PubMed  Google Scholar 

  62. Verdecchia P, Carini G, Circo A, Dovellini E, Giovannini E, Lombardo M, Solinas P, Gorini M, Maggioni AP, MAVI (MAssa Ventricolare sinistra nell'Ipertensione) Study Group (2001) Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J Am Coll Cardiol 38:1829–1835

    CAS  PubMed  Google Scholar 

  63. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH (1991) Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 114:345–352

    CAS  PubMed  Google Scholar 

  64. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 322:1561–1566

    CAS  PubMed  Google Scholar 

  65. Borbely A, Falcao-Pires I, van Heerebeek L et al (2009) Hypophosphorylation of the stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res 104:780–786

    CAS  PubMed  Google Scholar 

  66. Roe AT, Aronsen JM, Skårdal K et al (2017) Increased passive stiffness promotes diastolic dysfunction despite improved Ca21 handling during left ventricular concentric hypertrophy. Cardiovasc Res 113:1161–1172

    PubMed  PubMed Central  Google Scholar 

  67. Velagalet RS, Gona P, Pencina MJ et al (2014) Left ventricular hypertrophy patterns and incidence of heart failure with preserved versus reduced ejection fraction. Am J Cardiol 113:117–122

    Google Scholar 

  68. Lovic D, Manolis AJ, Lovic B et al (2014) The pathophysiological basis of carotid baroreceptor stimulation for the treatment of resistant hypertension. Curr Vasc Pharmacol 12:16–27

    CAS  PubMed  Google Scholar 

  69. Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100:999–1008

    CAS  PubMed  Google Scholar 

  70. Bisping E, Wakula P, Poteser M, Heinzel FR (2014) Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 64:293–301

    CAS  PubMed  Google Scholar 

  71. Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J Jr, Müller W, Chien KR (1999) Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97:189–198

    CAS  PubMed  Google Scholar 

  72. Michels da Silva D, Langer H, Graf T (2019) Inflammatory and molecular pathways in heart failure-ischemia. HFpEF and Transthyretin Cardiac Amyloidosis Int J Mol Sci 20(E):2322

    Google Scholar 

  73. Travers JG (2016) The cardiac fibrosis. Circ Res 118:1021–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lourenco AP, Leite-Moreira AF, Balligand JL et al (2018) An integrative translational approach to study heart failure with preserved ecejtion fraction: a position paper from the working group on myocardial function of the European Society of Cardiology. Eur J Heart Fail 20:216–227

    PubMed  Google Scholar 

  75. Lammerding J, Kamm RD, Lee RT (2004) Mechanotransduction in cardiac myocytes. Ann N Y Acad Sci 1015:53–70

    PubMed  Google Scholar 

  76. Opie L (2004) Heart physiology. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  77. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail 3:588–595

    PubMed  PubMed Central  Google Scholar 

  78. Chatterjee NA, Fifer MA (2011) Heart failure. In: Lilly LS (ed) Pathophysiology of heart failure: a collaborative project of medical students and faculty. Lippincott Williams & Wilkins, Philadelphia , chapter 9, pp 216–243

  79. Gaasch WH, Bing OH, Mirsky I (1982) Chamber compliance and myocardial stiffness in left ventricular hypertrophy. Eur Heart J 3 (Suppl A): 139–145

  80. Alderman EL, Glantz SA (1976) Acute hemodynamic interventions shift the diastolic pressure-volume curve in man. Circulation 54:662–671

    CAS  PubMed  Google Scholar 

  81. Gaasch WH, Zile MR (2004) Left ventricular diastolic dysfunction and diastolic heart failure. Annu Rev Med 54:373–394

    Google Scholar 

  82. Brutsaert DL, Sys SU, Gillebert TC (1993) Diastolic failure: pathophysiology and therapeutic implications. J Am Coll Cardiol 22:318–325

    CAS  PubMed  Google Scholar 

  83. Grossman W (2000) Defining diastolic dysfunction. Circulation 101:2020–2021

    CAS  PubMed  Google Scholar 

  84. Vachiery JL, Adir Y, Barberà JA et al (2013) Pulmonary hypertension due to left heart diseases. J am Coll Cardiol 62(Suppl D):D 100–D 108

    Google Scholar 

  85. Little WC (2005) Diastolic dysfunction beyond distensibility: adverse effects of ventricular dilatation. Circulation 112:2888–2890

    PubMed  Google Scholar 

  86. Tokola H, Hautala N, Marttila M, Magga J, Pikkarainen S, Kerkelä R, Vuolteenaho O, Ruskoaho H (2001) Mechanical load-induced alterations in B-type natriuretic peptide gene expression. Can J Physiol Pharmacol 79:646–653

    CAS  PubMed  Google Scholar 

  87. Vanderheyden M, Bartunek J, Goethals M (2004) Brain and other natriuretic peptides: molecular aspects. Eur J Heart Fail 6:261–268

    CAS  PubMed  Google Scholar 

  88. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, Palmer BM, van Buren P, Meyer M, Redfield MM, Bull DA, Granzier HL, LeWinter M (2015) Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131:1247–1259

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Adir Y, Guazzi M, Offer A, Temporelli PL, Cannito A, Ghio S (2017) Pulmonary hemodynamics in heart failure with reduced or preserved ejection fraction and pulmonary hypertension: similarities and disparities. Am Heart J 192:120–127

    PubMed  Google Scholar 

  90. Brucks S, Little WC, Chao T, Kitzman DW, Wesley-Farrington D, Gandhi S, Shihabi ZK (2005) Contribution of left ventricular diastolic dysfunction to heart failure regardless of ejection fraction. Am J Cardiol 95:603–606

    PubMed  Google Scholar 

  91. Iwano H, Little WC (2013) Heart failure: what does ejection fraction have to do with it? J Cardiol 62:1–3

    PubMed  Google Scholar 

  92. Galie N, Humbert M, Vachiery JL et al (2016) The joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur Heart J 37:67–119

    PubMed  Google Scholar 

  93. Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117:1717–1731

    PubMed  Google Scholar 

  94. Borlaug BA, Reddy YNV (2019) The role of the pericardium in heart failure. JACC: Heart Fail 7:574–585

    Google Scholar 

  95. Konstam MA, Kiernan MS, Bernstein D, Bozkurt B, Jacob M, Kapur NK, Kociol RD, Lewis EF, Mehra MR, Pagani FD, Raval AN, Ward C, American Heart Association Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; and Council on Cardiovascular Surgery and Anesthesia (2018) Evaluation and Management of Right-Sided Heart Failure. Circulation 137:e578–e622

    PubMed  Google Scholar 

  96. Voelkel NF, Natarajan R, Drake JI, Boogard HJ (2011) Right ventricle in pulmonary hypertension. Comp Physiol 1:525–540

    Google Scholar 

  97. Vonk Noordegraaf A, Chin KM, Haddad F et al (2019) Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 53: pii: 1801900

  98. Samson N, Pauli R (2017) Epigenetics, inflammation and metabolism in right heart failure associated with pulmonary hypertension. Pulmonary Circulation 7:572–587

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Borgdorff MAJ, Dickinson MG, Berger RMF, Bartelds B (2015) Right ventricular failure due to chronic pressure load: what have we learned in animal models since the NIH working group statement? Heart Fail Rev 20:475–491

    PubMed  PubMed Central  Google Scholar 

  100. Naeije R, Brimioulle S, Dewachter L (2014) Biomechanics of the right ventricle in health and disease (2013 Grover conference series). Pulmonary Circ 4:395–406

    Google Scholar 

  101. Borgdorff MA, Bartelds B, Dickinson MG et al (2013) Distinct loading conditions reveal various patterns of right ventricular adaptation. Am J Physiol heart Circ Physiol 305:H 354–H 364

    CAS  Google Scholar 

  102. Cingolani HE, Pérez NG, Cingolani OH, Ennis IL (2013) The Anrep effect: 100 years later. Am J Physiol heart Circ Physiol 304:H 175–H 182

    CAS  Google Scholar 

  103. Szabó G, Soós P, Bährle S, Radovits T, Weigang E, Kékesi V, Merkely B, Hagl S (2006) Adaptation of the right ventricle to an increased afterload in the chronically volume overloaded heart. Ann Thorac Surg 82:989–995

    PubMed  Google Scholar 

  104. Danton MH, Greil GF, Byrne JG et al (2003) Right ventricular volume measurement by conductance catheter. Am J Physiol Heart Circ Physiol 285:H 1774–H 1785

    CAS  Google Scholar 

  105. Belenkie I, Smith ER, Tyberg JV (2001) Ventricular interaction: from bench to bedside. Ann Med 33:236–241

    CAS  PubMed  Google Scholar 

  106. Jardin F, Dubourg O, Guéret P, Delorme G, Bourdarias J-P (2001) Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol 10:1201–1206

    Google Scholar 

  107. Rain S, Handoko ML, Trip P et al (2013) Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128:2016–2025

    CAS  PubMed  Google Scholar 

  108. de Man FS, Handoko ML, van Ballegoij JJ, Schalij I, Bogaards SJ, Postmus PE, van der Velden J, Westerhof N, Paulus WJ, Vonk-Noordegraaf A (2012) Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ: Heart Fail 5:97–105

    Google Scholar 

  109. Bartelds B, Borgdorff MA, Smit-van Oosten A, Takens J, Boersma B, Nederhoff MG, Elzenga NJ, van Gilst W, de Windt LJ, Berger RM (2011) Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load. Eur J Heart Fail 13:1275–1282

    CAS  PubMed  Google Scholar 

  110. Borgdorff MAJ, Bartelds B, Dickinson MG et al (2012) Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-loaded right ventricle. Eur J Heart Fail 14:1067–1074

    CAS  PubMed  Google Scholar 

  111. Bossers GPL, Hagdorn QAJ, Ploegstra MJ et al (2018) Volume load-induced right ventricular dysfunction in animal models: insights in a translational gap in congenital heart disease. Eur J Heart Fail 20:80–812

    Google Scholar 

  112. Reddy S, Zhao M, Hu DQ et al (2013) Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am J Physiol heart Circ Physiol 304:H 1313–H 1327

    Google Scholar 

  113. Davlouros PA, Niwa K, Webb GD, Gatzoulis MA (2006) The right ventricle in congenital heart disease. Heart 92 (Suppl I): i27–i38

  114. Messika-Zeitoun D, Thomson H, Bellamy M, Scott C, Tribouilloy C, Dearani J, Tajik AJ, Schaff H, Enriquez-Sarano M (2004) Medical and surgical outcome of tricuspid regurgitation caused by flail leaflets. J Thorac Cardiovasc Surg 128:296–302

    PubMed  Google Scholar 

  115. Apitz C, Webb GD, Redington AN (2009) Tetralogy of Fallot. Lancet 374:1462–1471

    CAS  PubMed  Google Scholar 

  116. Reddy S, Bernstein D (2008) Molecular aspects of RV adaptation to stress. In: Friedberg MK, Redington AN (eds) RV physiology, adaptation and failure in congenital andaquired heart disease. Springer Nature, Cham, Switzerland, chapter 3, p 35

  117. Melaku LS, Desalegn T (2019) Molecular mediators, characterization of signaling pathways with description of cellular distinctions in pathophysiology of cardiac hypertrophy and molecular changes underlying a transition to heart failure. Int J Health Allied Sci 8:1–24

    Google Scholar 

  118. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Franssen C, Chen S, Unger A et al (2016) Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. J Am Coll Cardiol: Heart Fail 4:312–324

    Google Scholar 

  120. Hamdani N, Franssen C, Lourenço A et al (2013) Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail 6:1239–1249

    CAS  PubMed  Google Scholar 

  121. Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sadoshima J, Izumo S (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571

    CAS  PubMed  Google Scholar 

  123. Pikkarainen S, Tokola H, Ruskoaho H (2007) Mechanotransduction of the endocrine heart: paracrine and intracellular regulation of B-type natriuretic peptide synthesis. In: Weckström M, Tavi P (eds) Cardiac Mechanotransduction, Landes bioscience and springer science and business, New York, NY, chapter, vol 9, pp 134–144

    Google Scholar 

  124. Liang F, Gardner DG (1999) Mechanical strain activates BNP gene transcription through a p38/NF-κB–dependent mechanism. J Clin Invest 104:1603–1612

    CAS  PubMed  PubMed Central  Google Scholar 

  125. De Keulenaer GW, Brutsaert DL (2011) Systolic and diastolic heart ailure are overlapping phenotypes within the heart failure spectrum. Circulation 123:1996–2004

    PubMed  Google Scholar 

  126. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ (2016) Phenotype- specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134:73–90

    PubMed  PubMed Central  Google Scholar 

  127. Gondalia RB, Rothermel BA, Lavandero S, Gillette TG, Hill JA (2012) Cardiac plasticity in health and disease. In: Patterson C, Willis MS (eds) Translational cardiology. Humana Press, Totowa, NJ, Springer Science and Business Media, pp 185–250

    Google Scholar 

  128. Mannacio V, Antignano A, De Amicis V et al (2013) B-type natriuretic peptide as a biochemical marker of left ventricular diastolic function: assessment in asymptomatic patients 1 year after valve replacement for aortic stenosis. Interact Cardiovasc Thorac Surg 17:371–377

    PubMed  PubMed Central  Google Scholar 

  129. Watanabe S, Shite J, Takaoka H, Shinke T, Imuro Y, Ozawa T, Otake H, Matsumoto D, Ogasawara D, Paredes OL, Yokoyama M (2006) Myocardial stiffness is an important determinant of the plasma brain natriuretic peptide concentration in patients with both diastolic and systolic heart failure. Eur Heart J 27:832–838

    CAS  PubMed  Google Scholar 

  130. Yang F, Dong A, Mueller P et al (2012) Coronary artery remodeling in a model of left ventricular pressure overload is influenced by platelets and inflammatory cells. PLoS One 7:e40196

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Smeets PJH, Teunissen BE, Planavila A et al (2008) Inflammatory pathways are activated during Cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARα and PPARδ. J Biol Chem 283:29109–21118

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lam CSP, Lund LH (2016) Microvascular endothelial dysfunction in heart failure with preserved ejection fraction. Heart 102:255–256

    Google Scholar 

  133. Ferrari R (2016) Heart failure: an historical perspective, Europ Heart J Supplements. 18(Suppl G):G 3–G 10

  134. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J (2009) The sympathetic nervous system in heart failure: physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54:1747–1762

    CAS  PubMed  Google Scholar 

  135. Floras JS (2009) Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 54:375–385

    CAS  PubMed  Google Scholar 

  136. Van Heerebeek L, Paulus WJ (2016) Understanding heart failure with preserved ejection fraction: where are we today? Neth Heart J 24:227–236

    PubMed  PubMed Central  Google Scholar 

  137. Kao DP, Lewsey JD, Anand IS, Massie BM, Zile MR, Carson PE, McKelvie R, Komajda M, McMurray J, Lindenfeld J (2015) Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur J Heart Fail 17:925–935

    PubMed  Google Scholar 

  138. Khan MS, Fonarow GC, Khan H, Greene SJ, Anker SD, Gheorghiade M, Butler J (2017) Renin-angiotensin blockade in heart failure with preserved ejection fraction: a systematic review and meta-analysis. ESC Heart Fail 4:402–408

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Krueger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krueger, W., Bender, N., Haeusler, M. et al. The role of mechanotransduction in heart failure pathobiology—a concise review. Heart Fail Rev 26, 981–995 (2021). https://doi.org/10.1007/s10741-020-09915-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09915-1

Keywords

Navigation