Skip to main content

Advertisement

Log in

Circular RNAs as potential theranostics in the cardiac fibrosis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are a type of single-stranded RNA molecules that normally do not encode proteins. circRNAs are involved in many physiological processes as well as the pathogenesis of diseases. Cardiac fibrosis is increasingly recognized as a pathological force in advanced heart diseases. A growing number of studies have reported that the occurrence and development of cardiac fibrosis is closely associated with the regulation of circRNAs. This review summarizes the current understanding of circRNA biogenesis and function and will highlight the recent updates regarding the involvement of circRNAs in cardiac fibrosis, and their potential as emerging biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Mestral C, Stringhini S (2017) Socioeconomic status and cardiovascular disease: an update. Curr Cardiol Rep 19(11):115

    Article  PubMed  Google Scholar 

  2. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Ärnlöv J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Bärnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castañeda-Orjuela CA, Castillo-Rivas J, Catalá-López F, Choi JY, Christensen H, Cirillo M, Cooper L Jr, Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, el Sayed Zaki M, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Havmoeller R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javanbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang YH, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lal DK, Larsson A, Linn S, Lopez A, Lotufo PA, el Razek HMA, Malekzadeh R, Mazidi M, Meier T, Meles KG, Mensah G, Meretoja A, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owolabi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safiri S, Salomon JA, Santos I, Santric Milicevic M, Sartorius B, Schutte A, Sepanlou S, Shaikh MA, Shin MJ, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabarés-Seisdedos R, Tadele Atnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Truelsen T, Tyrovolas S, Ukwaja KN, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolfe C, Workicho A, Xu G, Yano Y, Yip P, Yonemoto N, Younis M, Yu C, Vos T, Naghavi M, Murray C (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71(4):549–574

    Article  CAS  PubMed  Google Scholar 

  5. Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res 365(3):563–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225(3):631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baicu CF, Stroud JD, Livesay VA, Hapke E, Holder J, Spinale FG et al (2003) Changes in extracellular collagen matrix alter myocardial systolic performance. Am J Phys Heart Circ Phys 284(1):H122–HH32

    CAS  Google Scholar 

  9. Briasoulis A, Mallikethi-Reddy S, Palla M, Alesh I, Afonso L (2015) Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart 101(17):1406–1411

    Article  CAS  PubMed  Google Scholar 

  10. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361

    Article  CAS  PubMed  Google Scholar 

  11. Barbagallo D, Vittone G, Romani M, Purrello M (2018) Noncoding RNAs in health and disease. Int J Genomics 2018. https://doi.org/10.1155/2018/9135073

  12. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874

    Article  CAS  PubMed  Google Scholar 

  13. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139

    Article  CAS  PubMed  Google Scholar 

  14. Beermann J, Piccoli M-T, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96(4):1297–1325

    Article  CAS  PubMed  Google Scholar 

  15. Devaux Y, Zangrando J, Schroen B, Creemers EE, Pedrazzini T, Chang C-P, Dorn GW 2nd, Thum T, Heymans S, Cardiolinc network (2015) Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol 12(7):415–425

    Article  CAS  PubMed  Google Scholar 

  16. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  17. Fan X, Weng X, Zhao Y, Chen W, Gan T, Xu D (2017) Circular RNAs in cardiovascular disease: an overview. Biomed Res Int 2017

  18. Fischer JW, Leung AK (2017) CircRNAs: a regulator of cellular stress. Crit Rev Biochem Mol Biol 52(2):220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panda AC, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K (2017) Emerging roles and context of circular RNAs. WIREs 8(2):e1386

  20. Chen L-L (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211

    Article  CAS  PubMed  Google Scholar 

  21. Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB (2017) Identifying and characterizing circRNA-protein interaction. Theranostics 7(17):4183–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030

    Article  CAS  PubMed  Google Scholar 

  23. Cocquerelle C, Daubersies P, Majerus M-A, Kerckaert J-P, Bailleul B (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11(3):1095–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zaphiropoulos PG (1996) Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci 93(13):6536–6541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng X, Lin W, Guo M, Zou Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol 2017;13(6):\

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. Rna 19(2):141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Zhang X-O, Chen T, Xiang J-F, Yin Q-F, Xing Y-H et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  PubMed  CAS  Google Scholar 

  29. Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108(4):501–512

    Article  CAS  PubMed  Google Scholar 

  30. Burset M, Seledtsov I, Solovyev V (2000) Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 28(21):4364–4375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12(1):5–14

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Yang L, Chen L-L. The biogenesis, functions, and challenges of circular RNAs. Mol Cell 2018

  33. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. Rna 20(12):1829–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  37. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  38. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  39. Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X et al (2017) A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7(16):3842–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kulcheski FR, Christoff AP, Margis R (2016) Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 238:42–51

    Article  CAS  PubMed  Google Scholar 

  41. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen G, Shi Y, Liu M, Sun J (2018) circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis 9(2):175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kai D, Yannian L, Yitian C, Dinghao G, Xin Z, Wu J (2018) Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem Biophys Res Commun 503(2):863–869

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Zhao S, Ouyang S, Huang Z, Luo Q, Liao L. Circular RNA circHIPK3 acts as the sponge of microRNA-124 to promote human oral squamous cell carcinoma cells proliferation. Zhonghua kou qiang yi xue za zhi 2018;53(8):546–551

  45. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22–37 e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L et al (2017) Translation of circRNAs. Mol Cell 66(1):9–21 e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N 6-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, Li N, Zhou W, Yu Y, Cao X (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151–1164

    Article  CAS  PubMed  Google Scholar 

  49. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609–5612

    Article  CAS  PubMed  Google Scholar 

  50. Lukiw W (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307

    PubMed  PubMed Central  Google Scholar 

  51. Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B et al (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16(1):245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bayoumi AS, Aonuma T, Teoh J-p, Tang Y-l, Kim I-m (2018) Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases. Acta Pharmacol Sin 39(7):1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Altesha MA, Ni T, Khan A, Liu K, Zheng X (2019) Circular RNA in cardiovascular disease. J Cell Physiol 234(5):5588–5600

    Article  CAS  PubMed  Google Scholar 

  54. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123(2):255–278

    Article  CAS  PubMed  Google Scholar 

  55. Tan AY, Zimetbaum P (2011) Atrial fibrillation and atrial fibrosis. J Cardiovasc Pharmacol 57(6):625–629

    Article  CAS  PubMed  Google Scholar 

  56. Wu Q-Q, Xiao Y, Yuan Y, Ma Z-G, Liao H-H, Liu C et al (2017) Mechanisms contributing to cardiac remodelling. Clin Sci 131(18):2319–2345

    Article  CAS  Google Scholar 

  57. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79(5):949–956

    Article  CAS  PubMed  Google Scholar 

  58. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104(3):253–256

    Article  CAS  PubMed  Google Scholar 

  59. Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239(6):1573–1584

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Chen H, Seth A, McCulloch CA (2003) Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Phys Heart Circ Phys 285(5):H1871–H1H81

    CAS  Google Scholar 

  61. Eyden B (2008) The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J Cell Mol Med 12(1):22–37

    Article  CAS  PubMed  Google Scholar 

  62. Burlew BS, Weber KT (2002) Cardiac fibrosis as a cause of diastolic dysfunction. Herz 27(2):92–98

    Article  PubMed  Google Scholar 

  63. Guo Y, Luo F, Liu Q, Xu D (2017) Regulatory non-coding RNAs in acute myocardial infarction. J Cell Mol Med 21(5):1013–1023

    Article  CAS  PubMed  Google Scholar 

  64. Thum T (2014) Noncoding RNAs and myocardial fibrosis. Nat Rev Cardiol 11(11):655–663

    Article  CAS  PubMed  Google Scholar 

  65. Creemers EE, van Rooij E (2016) Function and therapeutic potential of noncoding RNAs in cardiac fibrosis. Circ Res 118(1):108–118

    Article  CAS  PubMed  Google Scholar 

  66. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18(1):5

    Article  CAS  PubMed  Google Scholar 

  68. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  PubMed  Google Scholar 

  69. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63-e

    Article  CAS  Google Scholar 

  72. Zhou B, Yu J-W (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem Biophys Res Commun 487(4):769–775

    Article  CAS  PubMed  Google Scholar 

  73. Tang C-M, Zhang M, Huang L, Hu Z-q, Zhu J-N, Xiao Z et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Li M, Ding W, Tariq MA, Chang W, Zhang X, Xu W, Hou L, Wang Y, Wang J (2018) A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 8(21):5855–5869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lim TB, Aliwarga E, Luu TDA, Li YP, Ng SL, Annadoray L et al (2019) Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc Res

  76. Sun Y, Yang Z, Zheng B, Zhang X-h, Zhang M-l, Zhao X-s et al (2017) A novel regulatory mechanism of smooth muscle α-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ Res 121(6):628–635

    Article  CAS  PubMed  Google Scholar 

  77. Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y et al (2019) Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol

  78. Zhu Y, Pan W, Yang T, Jiang Z, Meng X, Tao L et al (2019) Upregulation of circular RNA circNFIB attenuates cardiac fibrosis by sponging miR-433. Front Genet 10:564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang S, Li X, Zheng H, Si X, Li B, Wei G, et al. Loss of super-enhancer-regulated CircRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation. 2019

  80. Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M et al (2019) Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun 10(1):1–14

    Article  CAS  Google Scholar 

  81. Geng H-H, Li R, Su Y-M, Xiao J, Pan M, Cai X-X, Ji XP (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11(3):e0151753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wang K, Long B, Liu F, Wang J-X, Liu C-Y, Zhao B, Zhou LY, Sun T, Wang M, Yu T, Gong Y, Liu J, Dong YH, Li N, Li PF (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611

    Article  CAS  PubMed  Google Scholar 

  83. Cai L, Qi B, Wu X, Peng S, Zhou G, Wei Y, Xu J, Chen S, Liu S (2019) Circular RNA Ttc3 regulates cardiac function after myocardial infarction by sponging miR-15b. J Mol Cell Cardiol 130:10–22

    Article  CAS  PubMed  Google Scholar 

  84. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Du WW, Yang W, Chen Y, Wu Z-K, Foster FS, Yang Z et al (2016) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38(18):1402–1412

    Google Scholar 

  86. Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. BBA-GENE REGUL MECH 1859(1):163–168

    CAS  Google Scholar 

  87. Vausort M, Salgado-Somoza A, Zhang L, Leszek P, Scholz M, Teren A, Burkhardt R, Thiery J, Wagner DR, Devaux Y (2016) Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol 68(11):1247–1248

    Article  PubMed  Google Scholar 

  88. Li P, Chen S, Chen H, Mo X, Li T, Shao Y et al (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136

    Article  CAS  PubMed  Google Scholar 

  89. Koh W, Pan W, Gawad C, Fan HC, Kerchner GA, Wyss-Coray T et al (2014) Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc Natl Acad Sci 111(20):7361–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 456(7224):980–984

    Article  CAS  PubMed  Google Scholar 

  91. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110(11):1465–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Roy S, Khanna S, Hussain S-RA, Biswas S, Azad A, Rink C et al (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82(1):21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stanczyk J, Ospelt C, Karouzakis E, Filer A, Raza K, Kolling C, Gay R, Buckley CD, Tak PP, Gay S, Kyburz D (2011) Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 63(2):373–381

    Article  PubMed  PubMed Central  Google Scholar 

  94. Abonnenc M, Nabeebaccus AA, Mayr U, Barallobre-Barreiro J, Dong X, Cuello F, Sur S, Drozdov I, Langley SR, Lu R, Stathopoulou K, Didangelos A, Yin X, Zimmermann WH, Shah AM, Zampetaki A, Mayr M (2013) Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ Res 113(10):1138–1147

    Article  CAS  PubMed  Google Scholar 

  95. Tsuchiya S, Fujiwara T, Sato F, Shimada Y, Tanaka E, Sakai Y, Shimizu K, Tsujimoto G (2011) MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). J Biol Chem 286(1):420–428

    Article  CAS  PubMed  Google Scholar 

  96. Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW, Chakrabarti S (2014) Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 18(3):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen R, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104(2):170–178

    Article  CAS  PubMed  Google Scholar 

  98. Weiser-Evans MC. Smooth muscle differentiation control comes full circle: the circular noncoding RNA, circActa2, functions as a miRNA sponge to fine-tune α-SMA expression. Am Heart Assoc; 2017

  99. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu M, Wei X, Li M, Tao L, Wei L, Zhang M et al (2019) Circular RNA expression profiles of persistent atrial fibrillation in patients with rheumatic heart disease. Anatol J Cardiol 21(1):2

    CAS  PubMed  Google Scholar 

  101. Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS et al (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci 105(35):13027–13032

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dawson K, Wakili R, Ördög B, Clauss S, Chen Y, Iwasaki Y et al (2013) MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127(14):1466–1475

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram M. Soltani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, F., Soltani, B.M. Circular RNAs as potential theranostics in the cardiac fibrosis. Heart Fail Rev 26, 195–203 (2021). https://doi.org/10.1007/s10741-019-09908-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-019-09908-9

Keywords

Navigation