Skip to main content
Log in

Moving Past the Systematics Wars

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

It is time to escape the constraints of the Systematics Wars narrative and pursue new questions that are better positioned to establish the relevance of the field in this time period to broader issues in the history of biology and history of science. To date, the underlying assumptions of the Systematics Wars narrative have led historians to prioritize theory over practice and the conflicts of a few leading theorists over the less-polarized interactions of systematists at large. We show how shifting to a practice-oriented view of methodology, centered on the trajectory of mathematization in systematics, demonstrates problems with the common view that one camp (cladistics) straightforwardly “won” over the other (phenetics). In particular, we critique David Hull’s historical account in Science as a Process by demonstrating exactly the sort of intermediate level of positive sharing between phenetic and cladistic theories that undermines their mutually exclusive individuality as conceptual systems over time. It is misleading, or at least inadequate, to treat them simply as holistically opposed theories that can only interact by competition to the death. Looking to the future, we suggest that the concept of workflow provides an important new perspective on the history of mathematization and computerization in biology after World War II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrantes, Paulo and El-Hani, Charbel Niño. 2009. “Gould, Hull, and the Individuation of Scientific Theories.” Foundations of Science 14(4): 295–313.

    Article  Google Scholar 

  • Adams, Edward N., III. 1986. “N-Trees as Nestings: Complexity, Similarity, and Consensus.” Journal of Classification 3(2): 299–317.

  • Adams, Edward N., III. 1972. “Consensus Techniques and the Comparison of Taxonomic Trees.” Systematic Zoology 21(4): 390–397.

  • Agar, Jon. 2006. “What Difference Did Computers Make?’ Social Studies of Science 36(6): 869–907.

    Article  Google Scholar 

  • Allen, Garland E. 1991. Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science David L. Hull; The Metaphysics of Evolution David L. Hull. Isis 82(4): 698.

  • Almeida, M.T. and Bisby, F.A. 1984. “A Simple Method for Establishing Taxonomic Characters from Measurement Data.” Taxon 33(3): 405–409.

    Article  Google Scholar 

  • Archie, James W. 1985. “Methods for Coding Variable Morphological Features for Numerical Taxonomic Analysis.” Systematic Zoology 34(3): 326–345.

    Article  Google Scholar 

  • Bardram, Jakob E. 1997. Plans as Situated Action: an Activity Theory Approach to Workflow Systems. In Proceedings of the Fifth European Conference on Computer Supported Cooperative Work. Dordrecht: Springer Netherlands, pp. 17–32.

  • Barrett, Martin, Donoghue, Michael J. and Sober, Elliott. 1991. “Against Consensus.” Systematic Zoology 40(4): 486.

    Article  Google Scholar 

  • Beatty, John. 1982. Classes and Cladists. Systematic Zoology 31(1): 25–111.

  • Bisby, F.A. 1970. “The Evaluation and Selection of Characters in Angiosperm Taxonomy: an Example From Crotalaria.” The New Phytologist 69(4): 1149–1160.

    Article  Google Scholar 

  • Bowers, John, Button, Graham, and Sharrock, Wes. 1995. Workflow from Within and Without: Technology and Cooperative Work on the Print Industry Shopfloor. In Proceedings of the Fourth European Conference on Computer-Supported Cooperative Work ECSCW’95. Dordrecht: Springer Netherlands, pp. 51–66.

  • Cain, Joe. 2000. “Woodger, Positivism, and the Evolutionary Synthesis.” Biology & Philosophy 15: 535–551.

    Article  Google Scholar 

  • Camin, Joseph H. and Sokal, Robert R. 1965. “A Method for Deducing Branching Sequences in Phylogeny.” Evolution 19(3): 311–326.

    Article  Google Scholar 

  • Cranston, PS and Humphries, CJ. 1988. “Cladistics and computers: a chironomid conundrum?” Cladistics 4:72–92.

  • Craw, Robin. 1992. “Margins of Cladistics: Identity, Difference and Place in the Emergence of Phylogenetic Systematics 1864–1975.” Paul E. Griffiths (ed.), Trees of Life: Essays in Philosophy of Biology. Boston: Kluwer, pp. 65–107.

    Chapter  Google Scholar 

  • Daston, Lorraine and Galison, Peter. 2007. Objectivity. Cambridge, MA: MIT Press.

    Google Scholar 

  • Day, William H.E. 1985. “Optimal-Algorithms for Comparing Trees with Labeled Leaves.” Journal of Classification 2(1): 7–28.

    Article  Google Scholar 

  • De Bivort, Benjamin L., Clouse, Ronald M. and Giribet, Gonzalo. 2010. “A Morphometrics-Based Phylogeny of the Temperate Gondwanan Mite Harvestmen (Opiliones, Cyphophthalmi, Pettalidae).” Journal of Zoological Systematics and Evolutionary Research 48(4): 294–309.

    Article  Google Scholar 

  • Dourish, Paul. 2001. Process Descriptions as Organisational Accounting Devices: the Dual Use of Workflow Technologies. In The 2001 International ACM SIGGROUP Conference. New York: ACM

  • Duncan, Thomas and Baum, Bernard R. 1981. “Numerical Phenetics: Its Uses in Botanical Systematics.” Annual Review of Ecology and Systematics 12: 387–404.

    Article  Google Scholar 

  • Farris, James S. 1969. “A Successive Approximations Approach to Character Weighting.” Systematic Biology 18(4): 374–385.

    Google Scholar 

  • Farris, James S. 1970. “Methods for Computing Wagner Trees.” Systematic Zoology 19(1): 83–92.

    Article  Google Scholar 

  • Farris, James S. 1977. “On the Phenetic Approach to Vertebrate Classification.” Max K. Hecht, Peter C. Goody and Bessie M. Hecht (eds.), Major Patterns in Vertebrate Evolution. Boston: Springer, pp. 823–850.

    Chapter  Google Scholar 

  • Farris, James S. 1989. “Lord of the Flies: The Systematist as Study Animal.” Cladistics 5: 295–310.

    Article  Google Scholar 

  • Farris, James S. 2008. “Parsimony and Explanatory Power.” Cladistics. 24(5): 825–847.

    Article  Google Scholar 

  • Farris, James S. 2012. “Early Wagner Trees and ‘the Cladistic Redux’.” Cladistics 28(5): 545–547.

    Article  Google Scholar 

  • Farris, James S., Kluge, Arnold G. and Eckardt, Michael J. 1970. “A Numerical Approach to Phylogenetic Systematics.” Systematic Zoology 19(2): 172–189.

    Article  Google Scholar 

  • Felsenstein, Joe. 1983. “Parsimony in Systematics: Biological and Statistical Issues.” Annual Review of Ecology and Systematics 14: 313–333.

    Article  Google Scholar 

  • Felsenstein, Joe. 1988. “Phylogenies and Quantitative Characters.” Annual Review of Ecology and Systematics 19: 445–471.

    Article  Google Scholar 

  • Felsenstein, Joe. 2001. “The Troubled Growth of Statistical Phylogenetics.” Systematic Biology 50(4): 465–467.

    Article  Google Scholar 

  • Felsenstein, Joe. 2004. “A Digression on History and Philosophy.” Joe Felsenstein (ed.), Inferring Phylogenies. Sunderland, MA: Sinauer Associates Inc., pp. 123–146.

    Google Scholar 

  • García-Sancho, Miguel. 2012. Biology, Computing, and the History of Molecular Sequencing: From Proteins to DNA, 1945–2000. New York: Palgrave Macmillan.

    Book  Google Scholar 

  • Gerson, Elihu M. 2008. “Reach, Bracket, and the Limits of Rationalized Coordination: Some Challenges for CSCW.” Mark S. Ackerman, Christine A. Halverson, Thomas Erickson and Wendy A. Kellogg (eds.), Resources, Co-Evolution and Artifacts: Theory in CSCW. London: Springer, pp. 193–220.

    Chapter  Google Scholar 

  • Gilmour, John Scott Lennox. 1940. “Taxonomy and Philosophy.” Julian Huxley (ed.), The New Systematics. Oxford: Clarendon Press, pp. 461–474.

  • Goldman, Nick. 1988. “Methods for Discrete Coding of Morphological Characters for Numerical Analysis.” Cladistics 4(1): 59–71.

    Article  Google Scholar 

  • Goodfellow, Michael, Jones, Dorothy and Priest, Fergus G. (eds.). 1985. Computer-Assisted Bacterial Systematics New York: Academic Press.

  • Grantham, Todd A. 2000. “Evolutionary Epistemology, Social Epistemology, and the Demic Structure of Science.” Biology & Philosophy 15(3): 443–463.

    Article  Google Scholar 

  • Grantham, Todd A. 1994. “Does Science Have a ‘Global Goal?’: A Critique of Hull’s View of Conceptual Progress.” Biology & Philosophy 9(1): 85–97.

    Article  Google Scholar 

  • Griesemer, James R. 2007. “Tracking Organic Processes: Representations and Research Styles in Classical Embryology and Genetics.” Jane Maienschein and Manfred D. Laubichler (eds.), From Embryology to Evo-Devo: a History of Developmental Evolution. Cambridge, MA: MIT Press, pp. 375–435.

    Google Scholar 

  • Haber, Matthew. 2009. Phylogenetic Inference. In A Companion to the Philosophy of History and Historiography, ed Aviezer Tucker. Chichester, UK: Wiley-Blackwell, 231–242.

  • Hagen, Joel B. 1999. “Naturalists, Molecular Biologists, and the Challenges of Molecular Evolution.” Journal of the History of Biology 32(2): 321–341.

    Article  Google Scholar 

  • Hagen, Joel B. 2001. “The Introduction of Computers Into Systematic Research in the United States During the 1960s.” Studies in the History and Philosophy of Biological and Biomedical Sciences 32(2): 291–314.

    Article  Google Scholar 

  • Hagen, Joel B. 2003. “The Statistical Frame of Mind in Systematic Biology From Quantitative Zoology to Biometry.” Journal of the History of Biology 36(2): 353–384.

    Article  Google Scholar 

  • Hamilton, Andrew (ed.). 2014. The Evolution of Phylogenetic Systematics. Los Angeles:University of California Press.

    Google Scholar 

  • Helfenbein, Kevin G. and DeSalle, Rob. 2005. “Falsifications and Corroborations: Karl Popper’s Influence on Systematics.” Molecular Phylogenetics and Evolution 35(1): 271–280.

    Article  Google Scholar 

  • Hofer, Veronika. 2013. “Philosophy of Biology in Early Logical Empiricism.” Hanne Andersen, Dennis Dieks, Wenceslao J. Gonzalez, Thomas Uebel and Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Dordrecht: Springer Netherlands, pp. 351–363.

  • Hogeweg, P. 1976. “Iterative Character Weighing in Numerical Taxonomy.” Computers in Biology and Medicine 6(3): 199–211.

    Article  Google Scholar 

  • Hull, David L. 1982. “Exemplars and Scientific Change.” PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1982: 479–503.

  • Hull, David L. 1988. Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Hull, David L. 2001. “The Role of Theories in Biological Systematics.” Studies in the History and Philosophy of Biological and Biomedical Sciences 32(2): 221–238.

    Article  Google Scholar 

  • Huxley, Julian (ed.). 1940. The New Systematics. Oxford: Clarendon Press.

    Google Scholar 

  • Jensen, Richard J. 2009. “Phenetics: Revolution, Reform or Natural Consequence?’ Taxon 58(1): 50–60.

    Google Scholar 

  • Kitcher, Philip. 1988. “Selection Among the Systematists.” Nature 336(6196): 277–278.

    Article  Google Scholar 

  • Kitching, Ian J., Forey, Peter L., Humphries, Christopher J. and Williams, David M. 1998. Cladistics: The Theory and Practice of Parsimony Analysis, 2nd ed. Oxford: Oxford University Press.

    Google Scholar 

  • Kluge, Arnold G. and Farris, James S. 1969. “Quantitative Phyletics and the Evolution of Anurans.” Systematic Zoology 18(1): 1–32.

    Article  Google Scholar 

  • Koyré, Alexandre. 1978. Galileo Studies. Atlantic Highlands, NJ: Humanities Press.

    Google Scholar 

  • Latour, Bruno. 1990. “Review: Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science.” Contemporary Sociology 19(2): 281.

    Article  Google Scholar 

  • Le Quesne, Walter, J. 1982. “Compatibility Analysis and Its Applications.” Zoological Journal of the Linnean Society 74(3): 267–275.

    Article  Google Scholar 

  • Legendre, Pierre. 1975. “A Posteriori Weighting of Descriptors.” Taxon 24(5/6): 603–608.

    Article  Google Scholar 

  • Leonelli, Sabina and Ankeny, Rachel A. 2012. “Re-Thinking Organisms: The Impact of Databases on Model Organism Biology.” Studies in the History and Philosophy of Biological and Biomedical Sciences 43(1): 29–36.

    Article  Google Scholar 

  • Ludäscher, Bertram, Weske, Mathias, McPhillips, Timothy and Bowers, Shawn. 2009. “Scientific Workflows: Business as Usual?’ Business Process Management 5701: 31–47.

    Article  Google Scholar 

  • Ludäscher, Bertram, Altintas, Ilkay, Berkley, Chad, Higgins, Dan, Jaeger, Efrat, Jones, Matthew, Lee, Edward A., Tao, Jing and Zhao, Yang. 2006. “Scientific Workflow Management and the Kepler System.” Concurrency and Computation: Practice and Experience 18(10): 1039–1065.

    Article  Google Scholar 

  • Maynard-Smith, John. 1988. “Mechanisms of Advance.” Science 242(4882): 1182–1183.

    Article  Google Scholar 

  • Mayr, Ernst. 1942. Systematics and the Origin of Species From the Viewpoint of a Zoologist, 1st ed. New York: Columbia University Press.

    Google Scholar 

  • Mayr, Ernst. 1965. “Classification and Phylogeny.” American Zoologist 5(1): 165–174.

    Article  Google Scholar 

  • Mayr, Ernst. 1969. Principles of Systematic Zoology New York: McGraw-Hill.

  • McGuire, James B. 1979. “On the Consensus Construction of an Evolutionary Tree.” Journal of Social and Biological Systems 2(2): 107–118.

    Article  Google Scholar 

  • McGuire, James B. and Thompson, Colin J. 1978. “On the Reconstruction of an Evolutionary Order.” Journal of Theoretical Biology 75(2): 141–147.

    Article  Google Scholar 

  • McMorris, F.R. and Neumann, Dean. 1983. “Consensus Functions Defined on Trees.” Mathematical Social Sciences 4(2): 131–136.

    Article  Google Scholar 

  • Mickevich, M.F. and Johnson, Michael S. 1976. “Congruence Between Morphological and Allozyme Data in Evolutionary Inference and Character Evolution.” Systematic Zoology 25(3): 260–270.

    Article  Google Scholar 

  • Mickevich, M.F. and Platnick, N.I. 1989. “On the Information Content of Classifications.” Cladistics 5(1): 33–47.

    Article  Google Scholar 

  • Mishler, Brent D. 2005. “The Logic of the Data Matrix in Phylogenetic Analysis.” Victor A. Albert (ed.), Parsimony, Phylogeny, and Genomics. Oxford: Oxford University Press, pp. 57–70.

    Google Scholar 

  • Morgan, Gregory J. 1998. “Emile Zuckerkandl, Linus Pauling, and the Molecular Evolutionary Clock, 1959–1965.” Journal of the History of Biology 31(2): 155–178.

    Article  Google Scholar 

  • Nelson, Gareth. 1979. “Cladistic Analysis and Synthesis: Principles and Definitions, with a Historical Note on Adanson’s Familles Des Plantes (1763–1764).” Systematic Zoology 28(1): 1–21.

    Article  Google Scholar 

  • Nicholson, Daniel J. and Gawne, Richard. 2013. “Rethinking Woodger’s Legacy in the Philosophy of Biology.” Journal of the History of Biology 47(2): 243–292.

    Article  Google Scholar 

  • Nixon, Kevin C. and Carpenter, James M. 1996. “On Consensus, Collapsibility, and Clade Concordance.” Cladistics 12(4): 305–321.

    Article  Google Scholar 

  • November, Joseph A. 2012. Biomedical Computing: Digitizing Life in the United States. Baltimore:Johns Hopkins University Press.

    Google Scholar 

  • O’Hara, Robert J. 1994. “Evolutionary History and the Species Problem.” American Zoologist 34(1): 12–22.

    Article  Google Scholar 

  • Pante, Eric, Schoelinck, Charlotte and Puillandre, Nicolas. 2015. “From Integrative Taxonomy to Species Description: One Step Beyond.” Systematic Biology 64(1): 152–160.

    Article  Google Scholar 

  • Pimentel, Richard A. and Riggins, Rhonda. 1987. “The Nature of Cladistic Data.” Cladistics 3(3): 201–209.

    Article  Google Scholar 

  • Pullan, Martin R., Watson, Mark F., Kennedy, Jessie B., Raguenaud, Cédric and Hyam, Roger. 2000. “The Prometheus Taxonomic Model: A Practical Approach to Representing Multiple Classifications.” Taxon 49(1): 55–75.

    Article  Google Scholar 

  • Renzi, Barbara Gabriella and Napolitano, Giulio. 2011. Evolutionary Analogies: Is the Process of Scientific Change Analogous to the Organic Change?. Newcastle upon Tyne: Cambridge Scholars Publishing.

    Google Scholar 

  • Richards, Robert J. 1981. “Natural Selection and Other Models in the Historiography of Science.” Donald T. Campbell, Marilynn B. Brewer and Barry E. Collins (eds.), Scientific Inquiry and the Social Sciences. San Francisco: Jossey-Bass Publishers, pp. 37–76.

    Google Scholar 

  • Rieppel, Olivier. 2003. “Popper and Systematics.” Systematic Biology 52(2): 259–271.

    Article  Google Scholar 

  • Rieppel, Olivier. 2006. “Willi Hennig on Transformation Series: Metaphysics and Epistemology.” Taxon 55(2): 377–385.

    Article  Google Scholar 

  • Rieppel, Olivier. 2007. “The Metaphysics of Hennig’s Phylogenetic Systematics: Substance, Events and Laws of Nature.” Systematics and Biodiversity 5(4): 345–360.

    Article  Google Scholar 

  • Rieppel, Olivier. 2008. “Re-Writing Popper’s Philosophy of Science for Systematics.” History and Philosophy of the Life Sciences 30(3/4): 293–316.

    Google Scholar 

  • Rieppel, Olivier. 2009. “Hennig’s Enkaptic System.” Cladistics 25(3): 311–317.

    Article  Google Scholar 

  • Rieppel, Olivier. 2011. “Willi Hennig’s Dichotomization of Nature.” Cladistics 27(1): 103–112.

    Article  Google Scholar 

  • Rieppel, Olivier. 2013. “The Early Cladogenesis of Cladistics.” Andrew Hamilton (ed.), The Evolution of Phylogenetic Systematics. Los Angeles: University of California Press, pp. 117–137.

    Chapter  Google Scholar 

  • Rieppel, Olivier. 2016. Phylogenetic Systematics: Haeckel to Hennig. Boca Raton: CRC Press.

    Google Scholar 

  • Rieppel, Olivier, Williams, David M. and Ebach, Malte C. 2012. “Adolf Naef (1883–1949): On Foundational Concepts and Principles of Systematic Morphology.” Journal of the History of Biology 46(3): 445–510.

    Article  Google Scholar 

  • Schuh, Randall T and Pohlemus, John T. 1980. “Analysis of Taxonomic Congruence Among Morphological, Ecological, and Biogeographic Data Sets for the Leptopodomorpha (Hemiptera).” Systematic Zoology 29 (1): 1–26.

  • Schuh, Randall T. and Farris, James S. 1981. “Methods for Investigating Taxonomie Congruence and Their Application to the Leptopodomorpha.” Systematic Zoology 30(3): 331–351.

    Article  Google Scholar 

  • Schuh, Randall T. and Farris, James S. 2000. Biological Systematics: Principles and Applications. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Scott-Ram, N.R. 1990. Transformed Cladistics, Taxonomy, and Evolution. New York:Cambridge University Press.

    Book  Google Scholar 

  • Sepkoski, David. 2012. Rereading the Fossil Record: the Growth of Paleobiology as an Evolutionary Discipline. Chicago:University of Chicago Press.

    Book  Google Scholar 

  • Sepkoski, David and Ruse, Michael E. (eds.). 2009. The Paleobiological Revolution: Essays on the Growth of Modern Paleontology. Chicago: University of Chicago Press.

    Google Scholar 

  • Shipman, Frank M. and Marshall, Catherine C. 1999. “Formality Considered Harmful: Experiences, Emerging Themes, and Directions on the Use of Formal Representations in Interactive Systems.” Computer Supported Cooperative Work 8(4): 333–352.

    Article  Google Scholar 

  • Simpson, George Gaylord. 1961. Principles of Animal Taxonomy. New York: Columbia University Press.

    Google Scholar 

  • Sneath, Peter H.A. and Sokal, Robert R. 1973. Numerical Taxonomy: the Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Sokal, Robert R. and Rohlf, F. James. 1969. Biometry: the Principles and Practice of Statistics in Biological Research, 1st ed. San Francisco:W. H. Freeman and Company.

    Google Scholar 

  • Sokal, Robert R. and Rohlf, F. James. 1981. “Taxonomic Congruence in the Leptopodomorpha Re-Examined.” Systematic Zoology 30(3): 309–325.

    Article  Google Scholar 

  • Sokal, Robert R. and Rohlf, F. James. 2012. Biometry: the Principles and Practice of Statistics in Biological Research. New York: W. H. Freeman and Company.

    Google Scholar 

  • Sokal, Robert R. and Sneath, Peter H.A. 1963. Principles of Numerical Taxonomy. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Sterelny, Kim. 1994. “Science and Selection.” Biology & Philosophy 9(1): 45–62.

    Article  Google Scholar 

  • Sterner, Beckett. 2014. “Well-Structured Biology: Numerical Taxonomy and Its Methodological Vision for Systematics.” Andrew Hamilton (ed.), The Evolution of Phylogenetic Systematics. Los Angeles: University of California Press, pp. 213–244.

    Google Scholar 

  • Sterner, Beckett and Lidgard, Scott. 2014. “The Normative Structure of Mathematization in Systematic Biology.” Studies in the History and Philosophy of Biological and Biomedical Sciences 46: 44–54.

    Article  Google Scholar 

  • Strasser, Bruno J. 2010. Collecting, Comparing, and Computing Sequences: The Making of Margaret O. Dayhoff’s Atlas of Protein Sequence and Structure, 1954–1965. Journal of the History of Biology 43(4): 623-660.

  • Strasser, Bruno J. 2011. “The Experimenter’s Museum: GenBank, Natural History, and the Moral Economies of Biomedicine.” Isis 102(1): 60–96.

    Article  Google Scholar 

  • Strasser, Bruno J. 2012. “Collecting Nature: Practices, Styles, and Narratives.” Osiris 27(1): 303–340.

    Article  Google Scholar 

  • Strasser, Bruno J. and de Chadarevian, Soraya. 2011. The Comparative and the Exemplary: Revisiting the Early History of Molecular Biology. History of Science xlix: 317–226.

  • Suárez-Díaz, Edna. 2013. “The Long and Winding Road of Molecular Data in Phylogenetic Analysis.” Journal of the History of Biology 47(3): 443–478.

    Article  Google Scholar 

  • Suárez-Díaz, Edna and Anaya-Muñoz, Victor H. 2008. “History, Objectivity, and the Construction of Molecular Phylogenies.” Studies in History and Philosophy of Biological and Biomedical Sciences 39(4): 451–468.

    Article  Google Scholar 

  • Suchman, Lucy. 1993. “Do Categories Have Politics? the Language/Action Perspective Reconsidered.” G. De Michelis, C. Simone and K. Schmidt (eds.) Proceedings of the Third European Conference on Computer-Supported Cooperative Work. Dordrecht: Springer, pp. 1–14.

  • The Editors. 2016. Editorial. Cladistics 32(1): 1–1.

  • Varma, Charissa S. 2013. Beyond Set Theory: the Relationship Between Logic and Taxonomy From the Early 1930 to 1960 (Doctoral dissertation). Retrieved from https://tspace.library.utoronto.ca/bitstream/1807/68972/1/Varma_Charissa_S_201301_ PhD_thesis.pdf

  • Vergara-Silva, Francisco. 2009. “Pattern Cladistics and the ‘Realism–Antirealism Debate’ in the Philosophy of Biology.” Acta Biotheoretica 57(1–2): 269–294.

    Article  Google Scholar 

  • Vernon, Keith. 1988. “The Founding of Numerical Taxonomy.” British Journal for the History of Science. 21(2): 143–159.

    Article  Google Scholar 

  • Vernon, Keith. 2001. “A Truly Taxonomic Revolution? Numerical Taxonomy 1957–1970.” Studies in the History and Philosophy of Biological and Biomedical Sciences 32(2): 315–341.

    Article  Google Scholar 

  • Wheeler, Quentin D. 1986. “Character Weighting and Cladistic Analysis.” Systematic Zoology 35(1): 102–109.

    Article  Google Scholar 

  • Wilkins, John S. 1998. “The Evolutionary Structure of Scientific Theories.” Biology & Philosophy 13: 479–504.

    Article  Google Scholar 

  • Wilkinson, Mark. 1994. “Common Cladistic Information and Its Consensus Representation: Reduced Adams and Reduced Cladistic Consensus Trees and Profiles.” Systematic Biology 43(3): 343–368.

    Article  Google Scholar 

  • Williams, David M. and Ebach, Malte C. 2008. Foundations of Systematics and Biogeography. Boston, MA: Springer.

    Book  Google Scholar 

  • Williams, David M. and Ebach, Malte C. 2009. “What, Exactly, Is Cladistics? Re-Writing the History of Systematics and Biogeography.” Acta Biotheoretica 57(1–2): 249–268.

    Article  Google Scholar 

  • Williams, David M. and Forey, Peter L. (eds.). 2004. Milestones in Systematics. New York: CRC Press.

    Google Scholar 

  • Winograd, Terry. 1994. “Categories, Disciplines, and Social Coordination.” Computer Supported Cooperative Work 2(3): 191–197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beckett Sterner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterner, B., Lidgard, S. Moving Past the Systematics Wars. J Hist Biol 51, 31–67 (2018). https://doi.org/10.1007/s10739-017-9471-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10739-017-9471-1

Keywords

Navigation