Skip to main content

Advertisement

Log in

A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Phthalates are synthetic chemical compounds that are primarily used as plasticizers in various plastics and polymers to improve their physical properties. They are reported as ubiquitous pollutants in different spheres of the environment due to the presence of physical bonding with the polymeric matrix. In animals, including humans, they are known to cause various toxic effects. Nevertheless, less attention has been paid to phthalate induced stress in plants, since plants are equally vulnerable to their exposure as they are immobile and being an important component of the environment cannot be ignored. Moreover, due to their frequent detection in higher amounts in agricultural soils globally, significant concern has been raised about phthalate induced stress in plants over the past decade. The main sources of phthalate in agricultural soils are the use of plastic mulching, irrigation with wastewater, pesticide spraying, use of biosolids for improving soil properties, etc. From the soils, phthalates could enter into plants mainly via roots and undergo biomagnification at different trophic levels in an ecosystem. Phthalates were declared as endocrine disruptors thereby, their accumulation in edible plants raises food security concerns. Moreover, the accumulation of phthalates in plants is observed to affect germination, growth and development as well as reported to interfere with normal plant metabolism which led to modulations in the content of pigments, osmolytes, stress biomarkers and activities of antioxidative enzymes, thus reducing the yield and quality of edible plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Source: modified from Kvesitadze et al. (2009)

Fig. 3

Similar content being viewed by others

References

  • Ahmad R (2018) Introductory chapter: basics of free radicals and antioxidants. In: Ahmad F (ed) Free radicals, antioxidants and diseases. IntechOpen, London, pp 1–4

    Chapter  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids-A review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Arukwe A, Eggen T, Moder M (2012) Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments—A developing country case study from Owerri, Nigeria. Sci Tot Environ 438:94–102

    Article  CAS  Google Scholar 

  • Bai PY, Wittert G, Taylor AW, Martin SA, Milne RW, Jenkins AJ, Januszewski AS, Shi Z (2017) The association between total phthalate concentration and non-communicable diseases and chronic inflammation in South Australian urban dwelling men. Environ Res 158:366–372

    Article  CAS  PubMed  Google Scholar 

  • Bauer MJ, Herrmann R (1997) Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Sci Tot Environ 208:49–57

    Article  CAS  Google Scholar 

  • Beare MH, Coleman DC, Crossley DA, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22

    Article  CAS  Google Scholar 

  • Bender SF, van der Heijden MGA (2015) Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J Appl Ecol 52:228–239

    Article  CAS  Google Scholar 

  • Benjamin S, Pradeep S, Sarath Josh M, Kumar S, Masai E (2015) A monograph on the remediation of hazardous phthalates. J Hazard Mater 298:58–72

    Article  CAS  PubMed  Google Scholar 

  • Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA (2017) Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J Hazard Mater 340:360–383

    Article  CAS  PubMed  Google Scholar 

  • Bromilow RH, Chamberlain K (1995) Principles governing uptake and transport of chemicals. In: Trapp S, McFarlane JC (eds) Plant contamination. Lewis Publishers, Boca Raton, pp 37–68

    Google Scholar 

  • Cai QY, Mo CH, Wu QT, Zeng QY (2008a) Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application. Bioresour Technol 99:1830–1836

    Article  CAS  PubMed  Google Scholar 

  • Cai QY, Mo CH, Zeng QY, Wu QT, Férard JF, Antizar-Ladislao B (2008b) Potential of Ipomoea aquatica cultivars in phytoremediation of soils contaminated with di-n-butyl phthalate. Environ Exp Bot 62:205–211

    Article  CAS  Google Scholar 

  • Cao XL (2010) Phthalate esters in foods: sources, occurrence, and analytical methods. Compr Rev Food Sci Food Saf 9:21–43

    Article  CAS  PubMed  Google Scholar 

  • Carlstedt F, Jönsson BAG, Bornehag CG (2013) PVC flooring is related to human uptake of phthalates in infants. Indoor Air 23:32–39

    Article  CAS  PubMed  Google Scholar 

  • Chandel G, Dubey M, Meena R (2013) Differential expression of heat shock proteins and heat stress transcription factor genes in rice exposed to different levels of heat stress. J Plant Biochem Biotechnol 22:277–285

    Article  CAS  Google Scholar 

  • Cheng TS (2012) The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Aquat Toxicol 124–125:171–178

    Article  PubMed  CAS  Google Scholar 

  • Cheng LJ, Cheng TS (2012) Oxidative effects and metabolic changes following exposure of greater duckweed (Spirodela polyrhiza) to diethyl phthalate. Aquat Toxicol 109:166–175

    Article  CAS  PubMed  Google Scholar 

  • Chen WC, Huang HC, Wang YS, Yen JH (2011) Effect of benzyl butyl phthalate on physiology and proteome characterization of water celery (Ipomoea aquatica Forsk.). Ecotoxicol Environ Saf 74:1325–1330

    Article  CAS  PubMed  Google Scholar 

  • Collins CD (2008) A semi-quantitative approach to deriving a model structure for the uptake of organic chemicals by vegetation. Int J Phytoremediat 10:371–377

    Article  Google Scholar 

  • Collins C, Fryer M, Grosso A (2006) Plant uptake of non-ionic organic chemicals. Environ Sci Technol 40:45–52

    Article  CAS  PubMed  Google Scholar 

  • Czernych R, Chraniuk M, Zagożdżon P, Wolska L (2017) Characterization of estrogenic and androgenic activity of phthalates by the XenoScreen YES/YAS in vitro assay. Environ Toxicol Pharmacol 53:95–104

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Duan K, Cui M, Wu Y, Huang X, Xue A, Deng X, Luo L (2018) Effect of dibutyl phthalate on the tolerance and lipid accumulation in the green microalgae Chlorella vulgaris Bull Environ Contam Toxicol 101:338–343

    Article  CAS  PubMed  Google Scholar 

  • Dueck ThA, Van Dijk CJ, David F, Scholz N, Vanwalleghem F (2003) Chronic effects of vapour phase di-n-butyl phthalate (DBP) on six plant species. Chemosphere 53:911–920

    Article  CAS  PubMed  Google Scholar 

  • ECHA (European Chemicals Agency) (2013) Evaluation of new scientific evidence concerning DINP and DIDP in relation to entry 52 of annex XVII to Reach Regulation (EC) No 1907/2006 (Final Review Report). Available: http://echa.europa.eu/documents/10162/31b4067e-de40-4044-93e8-9c9ff 1960715 (Accessed on 2018)

  • ECPI (2014) European Council for Plasticizers and Intermediates. The plasticizers information centre. Available: www.plasticisers.org (Accessed on 2019)

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    Article  CAS  PubMed  Google Scholar 

  • Food and Agricultural Organization (FAO) (2009) Land and plant nutrition management service. (Available: www.fao.org/wsfs/forum2050/) (Accessed on 2019)

  • Frederiksen H, Nielsen JKS, Mørck TA, Hansen PW, Jensen JF, Nielsen O, Andersson AM, Knudsen LE (2013) Urinary excretion of phthalate metabolites, phenols and parabens in rural and urban Danish mother-child pairs. Int J Hyg Environ Health 216:772–783

    Article  CAS  PubMed  Google Scholar 

  • Gao DW, Wen ZD (2016) Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Tot Environ 541:986–1001

    Article  CAS  Google Scholar 

  • Gao M, Liu Y, Dong Y, Song Z (2018) Photosynthetic and antioxidant response of wheat to di(2-ethylhexyl) phthalate (DEHP) contamination in the soil. Chemosphere 209:258–267

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Liu Y, Dong Y, Song Z (2019) Physiological responses of wheat planted in fluvo-aquic soils to di (2-ethylhexyl) and di-n-butyl phthalates. Environ Pollut 244:774–782

    Article  CAS  PubMed  Google Scholar 

  • Gavala HN, Alatriste-Mondragon F, Iranpour R, Ahring BK (2003) Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge. Chemosphere 52:673–682

    Article  CAS  PubMed  Google Scholar 

  • Gershater MC, Edwards R (2007) Regulating biological activity in plants with carboxylesterases. Plant Sci 173:579–588

    Article  CAS  Google Scholar 

  • Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a mediterranean salt marsh. Notulae Bot Horti Agrobot Cluj-Napoca 39:9–17

    Article  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194. https://doi.org/10.1086/283244

    Article  Google Scholar 

  • Gu S, Zheng H, Xu Q, Sun C, Shi M, Wang Z, Li F (2017) Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. Aquat Toxicol 191:122–130

    Article  CAS  PubMed  Google Scholar 

  • Haslam R, Raveton M, Cole DJ, Pallett KE, Coleman JO (2001) The identification and properties of apoplastic carboxylesterases from wheat that catalyse deesterification of herbicides. Pest Biochem Physiol 71:178–189

    Article  CAS  Google Scholar 

  • He L, Gielen G, Bolan NS, Zhang X, Qin H, Huang H, Wang H (2015) Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev 35:519–534

    Article  CAS  Google Scholar 

  • Hines EP, Calafat AM, Silva MJ, Mendola P, Fenton SE (2009) Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women. Environ Health Perspect 117:86–92

    Article  CAS  PubMed  Google Scholar 

  • Hoppin JA, Jaramillo R, London SJ, Bertelsen RJ, Salo PM, Sandler DP, Zeldin DC (2013) Phthalate exposure and allergy in the US population: results from NHANES 2005–2006. Environ Health Perspect 121:1129–1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548

    PubMed  PubMed Central  Google Scholar 

  • Huang Q, Wang Q, Tan W, Song G, Lu G, Li F (2006) Biochemical responses of two typical duckweeds exposed to dibutyl phthalate. J Environ Sci Health Part A 41:1615–1626

    Article  CAS  Google Scholar 

  • Hu QJ, Chen MX, Song T, Cheng CL, Tian Y, Hu J, Zhang JH (2020) Spermidine enhanced the antioxidant capacity of rice seeds during seed aging. Plant Growth Regul. https://doi.org/10.1007/s10725-020-00613-4

    Article  Google Scholar 

  • Inui H, Wakai T, Gion K, Kim YS, Eun H (2008) Differential uptake for dioxin-like compounds by zucchini subspecies. Chemosphere 73:1602–1607

    Article  CAS  PubMed  Google Scholar 

  • Jensen MS, Anand-Ivell R, Nørgaard-Pedersen B, Jönsson BA, Bonde JP, Hougaard DM, Cohen A, Lindh CH, Ivell R, Toft G (2015) Amniotic fluid phthalate levels and male fetal gonad function. Epidemiology 26:91–99

    Article  PubMed  Google Scholar 

  • Kanojia A, Dijkwel PP (2018) Abiotic stress responses are governed by reactive oxygen species and age. Annu Plant Rev Online 1:1–32

    Google Scholar 

  • Kapanen A, Stephen JR, Brüggemann J, Kiviranta A, White DC, Itävaara M (2007) Diethyl phthalate in compost: ecotoxicological effects and response of the microbial community. Chemosphere 67:2201–2209

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Kumari A, Kaur K, Kaur H (2017) Comparative assessment of phytotoxic responses induced by the exposure of benzyl butyl phthalate and di-n-butyl phthalate to giant duckweed (Spirodela polyrhiza L. Schleiden). J Pharm Sci Res 9:2079–2085

    CAS  Google Scholar 

  • Keunen ELS, Peshev D, Vangronsveld J, Van Den Ende WIM, Cuypers ANN (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255

    Article  CAS  PubMed  Google Scholar 

  • Korte F, Kvesitadze G, Ugrekhelidze D, Gordeziani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F (2000) Organic toxicants and plants. Ecotoxicol Environ Saf 47:1–26

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Kaur R (2017) Germination and early growth toxicity to barley seedlings (Hordeum vulgare L.) under di-n-butyl phthalate (DBP) stress. J Pharm Sci Res 9:2361–2366

    CAS  Google Scholar 

  • Kumari A, Kaur R (2018) Evaluation of benzyl-butyl phthalate induced germination and early growth vulnerability to barley seedlings (Hordeum vulgare L.). Indian J Ecol 45:174–177

    Google Scholar 

  • Kumari A, Kaur R (2019) Modulation of biochemical and physiological parameters in Hordeum vulgare L. seedlings under the influence of benzyl-butyl phthalate. PeerJ 7:e6742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumari A, Kaur R (2020) Di-n-butyl phthalate-induced phytotoxicity in Hordeum vulgare seedlings and subsequent antioxidant defense response. Biol Plant 64:110–118

    Article  Google Scholar 

  • Kumari A, Kaur R, Kaur R (2018) An insight into drought stress and signal transduction of abscisic acid. Plant Sci Today 5:72–80

    Article  CAS  Google Scholar 

  • Kumari A, Kaur R, Sharma R, Kaur R (2019) Assessment of toxicological effects of di-n-butyl phthalate to a cereal crop (Hordeum vulgare L.). J Adv Agric Technol 6:20–26

    Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: cncept and review. Soil Biol Biochem 83:184–199

    Article  CAS  Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (2006) Biochemical mechanisms of detoxification in higher plants: basis of phytoremediation. Springer, New York

    Google Scholar 

  • Kvesitadze E, Sadunishvili T, Kvesitadze G (2009) Mechanisms of organic contaminants uptake and degradation in plants. World Acad Sci Eng Technol 55(6):458–468

    Google Scholar 

  • Li FM, Wu M, Yao Y, Zheng X, Zhao J, Wang ZY, Xing BS (2015) Inhibitory effects and oxidative target site of dibutyl phthalate onKarenia brevis. Chemosphere 132:32–39

    Article  CAS  PubMed  Google Scholar 

  • Liao CS, Yen JH, Wang YS (2006) Effects of endocrine disruptor di-n-butyl phthalate on the growth of Bok choy (Brassica rapa subsp. chinensis) . Chemosphere 65:1715–1722

    Article  CAS  PubMed  Google Scholar 

  • Liao CS, Yen JH, Wang YS (2009) Growth inhibition in Chinese cabbage (Brassica rapa var. chinensis) growth exposed to di-n-butyl phthalate. J Hazard Mater 163:625–631

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Liu W, Zhang J, Shi W, Wang X, Cai J, Zou Z, Lu R, Sun C, Wang H, Huang C (2018) Associations of urinary phthalate metabolites with residential characteristics, lifestyles, and dietary habits among young children in Shanghai, China. Sci Tot Environ 616–617:1288–1297

    Article  CAS  Google Scholar 

  • Lin H, Tao S, Zuo Q, Coveney RM (2007) Uptake of polycyclic aromatic hydrocarbons by maize plants. Environ Pollut 148:614–619

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Chen S, Chao Y, Huang X, Wang S, Qiu R (2017) Carboxylesterase-involved metabolism of di-n-butyl phthalate in pumpkin (Cucurbita moschata) seedlings. Environ Pollut 220:421–430

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Guo HY, Mu JL, Wang XR, Yin DQ (2006) Physiological responses of submerged macrophytes to dibutyl phthalate (DBP) exposure. Aquat Ecosyst Health Manage 9:43–47

    Article  CAS  Google Scholar 

  • Li Y, Huang G, Gu H, Huang Q, Lou C, Zhang L, Liu H (2018) Assessing the risk of phthalate ester (PAE) contamination in soils and crops irrigated with treated sewage effluent. Water 10:999

    Article  CAS  Google Scholar 

  • Lyman WJ, Reehl WF, Rosenblatt DH (1990) Handbook of chemical property estimation methods. American Chemical Society, Washington

    Google Scholar 

  • Mackintosh CE, Maldonado J, Hongwu J, Hoover N, Chong A, Ikonomou MG, Gobas FAPC (2004) Distribution of phthalate esters in a marine aquatic food web: comparison to polychlorinated biphenyls. Environ Sci Technol 38:2011–2020

    Article  CAS  PubMed  Google Scholar 

  • Macoustra GK, King CK, Wasley J, Robinson SA, Jolley DF (2015) Impact of hydrocarbons from a diesel fuel on the germination and early growth of subantarctic plants. Environ Sci Procese Impacts 17:1238–1248

    Article  CAS  Google Scholar 

  • Ma T, Christie P, Teng Y, Luo Y (2013) Rape (Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis(2-ethylhexyl) phthalate. Environ Sci Pollut Res 20:5289–5298

    Article  CAS  Google Scholar 

  • Ma TT, Christie P, Luo YM, Teng Y (2014) Physiological and antioxidant responses of germinating mung bean seedlings to phthalate esters in soil. Pedosphere 24:107–115

    Article  CAS  Google Scholar 

  • Melin C, Egneus H (1983) Effects of di-n-butyl phthalate on growth and photosynthesis in algae and on isolated organelles from higher plants. Physiol Plant 59:461–466

    Article  CAS  Google Scholar 

  • Meng XZ, Wang Y, Xiang N, Chen L, Liu Z, Wu B, Dai X, Zhang YH, Xie Z, Ebinghaus R (2014) Flow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: implication for risk assessment of sludge applied to soil. Sci Total Environ 476–477:242–249

    Article  PubMed  CAS  Google Scholar 

  • Millar DJ, Hannay JW (1986) Phytotoxicity of phthalate plasticisers: 1. Diagnosis and commercial implications. J Exp Bot. 37:883–897

    Article  Google Scholar 

  • Miller EL, Nason SL, Karthikeyan KG, Pedersen JA (2016) Root uptake of pharmaceuticals and personal care product ingredients. Environ Sci Technol 50:525–541

    Article  CAS  PubMed  Google Scholar 

  • Mitsunobu S, Takahashi Y (2006) Study of the water solubility and sorption on particulate matters of phthalate in the presence of humic acid using 14c labelled di-(2-ethylhexyl)phthalate. Water Air Soil Pollut 175:99–115

    Article  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Kördel W (1993) Occurrence and fate of phthalates in soil and plants. Sci Tot Environ 134:431–437

    Article  Google Scholar 

  • Net S, Sempéré R, Delmont A, Paluselli A, Ouddane B (2015) Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol 49:4019–4035

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki H (2008) Seed germination and reserve mobilization. In: Encyclopedia of Life Sciences. Wiley, New York

  • Ogner G, Schnitzer M (1970) Humic substances: fulvic acid-dialkyl phthalate complexes and their role in pollution. Science 170:317–318

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Jing J, Dong F, Yao Q, Zhang W, Zhang H, Yao B, Dai J (2015) Association between phthalate metabolites and biomarkers of reproductive function in 1066 Chinese men of reproductive age. J Hazard Mater 300:729–736

    Article  CAS  PubMed  Google Scholar 

  • Park SS, Bae M-S, Schauer JJ, Kim YJ, Cho Y, Kim J (2006) Molecular composition of PM2.5 organic aerosol measured at an urban site of Korea during the ACE-Asia campaign. Atmos Environ 40:4182–4198

    Article  CAS  Google Scholar 

  • Paterson S, Mackay D, Tam D, Shiu WY (1990) Uptake of organic chemicals by plants: a review of processes, correlations and models. Chemosphere 21:297–331

    Article  CAS  Google Scholar 

  • Philippat C, Mortamais M, Chevrier C, Petit C, Calafat AM, Ye X, Silva MJ, Brambilla C, Pin I, Charles MA, Cordier S (2012) Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ Health Perspect 120:464–470

    Article  CAS  PubMed  Google Scholar 

  • Qing X, Yutong Z, Shenggao L (2015) Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol Environ Saf 120:377–385

    Article  CAS  PubMed  Google Scholar 

  • Ryan JA, Bell RM, Davidson JM, O’Connor GA (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17:2299–2323

    Article  CAS  Google Scholar 

  • Saarma K, Tarkka MT, Itävaara M, Fagerstedt KV (2003) Heat shock protein synthesis is induced by diethyl phthalate but not by di(2-ethylhexyl) phthalate in radish (Raphanus sativus). J Plant Physiol 160:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Sandermann JH (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241

    Article  CAS  PubMed  Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y (2014) Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci World J 2014:1–10

    Article  CAS  Google Scholar 

  • Scheringer M, Salzmann M, Stroebe M, Wegmann F, Fenner K, Hungerbühler K (2004) Long-range transport and global fractionation of POPs: insights from multimedia modeling studies. Environ Pollut 128:177–188

    Article  CAS  PubMed  Google Scholar 

  • Schettler T (2006) Human exposure to phthalates via consumer products. Int J Androl 29:134–139

    Article  CAS  PubMed  Google Scholar 

  • Schlumpf M, Kypke K, Wittassek M, Angerer J, Mascher H, Mascher D, Vökt C, Birchler M, Lichtensteiger W (2010) Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: correlation of UV filters with use of cosmetics. Chemosphere 81:1171–1183

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Kaur R (2019) Diallyl phthalate-triggered oxidative stress in Spirodela polyrhiza L. Schleiden: physiological effects and role of antioxidant defence system. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02491-4

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  • Sharma R, Kumari A, Rajput S, Arora S, Rampal R, Kaur R (2019) Accumulation, morpho-physiological and oxidative stress induction by single and binary treatments of fluoride and low molecular weight phthalates in Spirodela polyrhiza L. Schleiden. Sci Rep 9:1–19

    Article  CAS  Google Scholar 

  • Shiue I (2014) Higher urinary heavy metal, phthalate, and arsenic but not parabens concentrations in people with high blood pressure, U.S. NHANES, 2011–2012. Int J Environ Res Public Health 11:5989–5999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shu G, Pontieri V, Dengler NG, Mets LJ (1999) light induction of cell type differentiation and cell-type-specific gene expression in cotyledons of a C4plant, Flaveria trinervia Plant Physiol 121:731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibali LL, Okonkwo JO, McCrindle RI (2013) Determination of selected phthalate esters compounds in water and sediments by capillary gas chromatography and flame ionization detector. J Environ Sci Health Part A 48:1365–1377

    Article  CAS  Google Scholar 

  • Singh J, Thakur JK (2018) Photosynthesis and abiotic stress in plants. In: Vats S (ed) Biotic and abiotic stress tolerance in plants. Springer, Singapore, pp 27–46

    Chapter  Google Scholar 

  • Singh R, Parihar P, Prasad SM (2020) Sulphur and calcium attenuate arsenic toxicity in Brassica by adjusting ascorbate–glutathione cycle and sulphur metabolism. Plant Growth Regul 91:221–235

    Article  CAS  Google Scholar 

  • Song Y, Lv J, Ma Z, Dong W (2019) The mechanism of alfalfa (Medicago sativa L.) response to abiotic stress. Plant Growth Regul. https://doi.org/10.1007/s10725-019-00530-1

    Article  Google Scholar 

  • Srivastava A, Sharma VP, Tripathi R, Kumar R, Patel DK, Mathur PK (2010) Occurrence of phthalic acid esters in Gomti River Sediment, India. Environ Monit Assess 169:397–406

    Article  CAS  PubMed  Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749

    Article  CAS  Google Scholar 

  • Sun Q, Cornelis MC, Townsend MK, Tobias DK, Eliassen AH, Franke AA, Hauser R, Hu FB (2014) Association of urinary concentrations of bisphenol a and phthalate metabolites with risk of type 2 diabetes: a prospective investigation in the Nurses’ Health Study (NHS) and NHSII Cohorts. Environ Health Perspect 122:616–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun J, Wu X, Gan J (2015) Uptake and metabolism of phthalate esters by edible plants. Environ Sci Technol 49:8471–8478

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Pan L, Tsang DCW, Li Z, Zhu L, Li X (2018) Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China. Environ Sci Pollut Res 25:34–42

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Teng Y, Wu J, Lu S, Wang Y, Jiao X, Song L (2014) Soil and soil environmental quality monitoring in China: a review. Environ Int 69:177–199

    Article  CAS  PubMed  Google Scholar 

  • Tienpont B (2004) Determination of phthalates in environmental, food and biomatrices: an analytical challenge. Environ Res 134:345–52

    Google Scholar 

  • Trapp M, Mc Farlane C (1994) Modeling and simulation of organic chemical processes. In: Trapp S, McFarlane JC (eds) Plant contamination. CRC, Boca Raton

    Google Scholar 

  • Trasande L, Sathyanarayana S, Trachtman H (2014) Dietary phthalates and low-grade albuminuria in US children and adolescents. Clin J Am Soc Nephrol 9:100–109

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Chapter twenty-four—mechanisms of high salinity tolerance in plants. In: Häussinger D, Sies H (eds) Methods in enzymology. Academic Press, Cambridge, pp 419–438

    Google Scholar 

  • Ventrice P, Ventrice D, Russo E, De Sarro G (2013) Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity. Environ Toxicol Pharmacol 36:88–96

    Article  CAS  PubMed  Google Scholar 

  • Virgin HI, Holst AM, Mörner J (1981) Effect of di-n‐butyl phthalate on the carotenoid synthesis in green plants. Physiol Plant 53:158–163

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Whyatt RM, Perzanowski MS, Just AC, Rundle AG, Donohue KM, Calafat AM, Hoepner LA, Perera FP, Miller RL (2014) Asthma in inner-city children at 5–11 years of age and prenatal exposure to phthalates: the Columbia Center for Children’s Environmental Health Cohort. Environ Health Perspect 122:1141–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkes CE, Summer JW, Daniels CA (2005) PVC handbook. Carl Hanser Verlag GmbH & Co, Germany. https://www.bookdepository.com/PVC-Handbook-Charles-E-Wilkes

  • Wittassek M, Koch HM, Angerer J, Brüning T (2011) Assessing exposure to phthalates—the human biomonitoring approach. Mol Nutr Food Res 55:7–31

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Ebinghaus R, Temme C, Lohmann R, Caba A, Ruck W (2007) Occurrence and air–sea exchange of phthalates in the arctic. Environ Sci Technol 41:4555–4560

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Liu N, Wu M, Guo R, Zhou J, Shi W, Li F (2010) Aquatic toxicity of di (2-eihylhexyl) phthalate to duckweeds. J Shanghai Univ (English Ed) 14:100–105

    Article  CAS  Google Scholar 

  • Yu Y, Qin W, Li Y, Zhang C, Wang Y, Yang Z et al (2019) Red light promotes cotton embryogenic callus formation by influencing endogenous hormones, polyamines and antioxidative enzyme activities. Plant Growth Regul 87:187–199

    Article  CAS  Google Scholar 

  • Zai XM, Zhu SN, Qin P, Wang XY, Che L, Luo FX (2012) Effect of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale. Biologia 72:735–744

    Google Scholar 

  • Zhang Y, Du N, Wang L, Zhang H, Zhao J, Sun G, Wang P (2015) Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress. Environ Sci Pollut Res 22:3477–3488

    Article  CAS  Google Scholar 

  • Zhang Y, Tao Y, Zhang H, Wang L, Sun G, Sun X, Erinle KO, Feng C, Song Q, Li M (2015) Effect of di-n-butyl phthalate on root physiology and rhizosphere microbial community of cucumber seedlings. J Hazard Mater 289:9–17

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang H, Sun X, Wang L, Du N, Tao Y, Sun G, Erinle KO, Wang P, Zhou C, Duan S (2016a) Effect of dimethyl phthalate (DMP) on germination, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. Environ Sci Pollut Res 23:1183–1192

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang H, Sun X, Wang L, Du N, Tao Y, Sun G, Erinle KO, Wang P, Zhou C, Duan S (2016b) Effect of dimethyl phthalate (DMP) on germination, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. Environ Sci Pollut Res 23:1183–1192

    Article  CAS  Google Scholar 

  • Zhang C, Feng Y, Liu YW, Chang HQ, Li ZJ, Xue JM (2017) Uptake and translocation of organic pollutants in plants: a review. J Integr Agric 16:1659–1668

    Article  CAS  Google Scholar 

  • Zhou WM (1989) Priority pollutants. China Environmental Science Press, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to University Grants Commission, New Delhi (India) for financial assistance provided under National Fellowship for Higher Education (NFHE) scheme (vide letter no. F1-17.1/2015-16/NFST-2015-17-ST-HIM-1038/(SA-111/Website)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Kaur, R. A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation. Plant Growth Regul 91, 327–347 (2020). https://doi.org/10.1007/s10725-020-00625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00625-0

Keywords

Navigation