Skip to main content
Log in

Dynamics of biochemical and morphophysiological changes during zygotic embryogenesis in Acca sellowiana (Berg.) Burr.

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Acca sellowiana (Berg.) Burr. is a native Myrtaceae from southern Brazil and Uruguay, now the subject of a domestication and breeding program. Biotechnological tools have been used to assist in this program. The establishment of a reliable protocol of somatic embryogenesis has been pursued, with a view to capturing and fixing genetic gains. The rationale behind this work relies on the fact that deepening comprehension of the general metabolism of zygotic embryogenesis may certainly improve the protocol for somatic embryogenesis. Thus, in the present work we studied the accumulation of protein, total sugars, starch, amino acids, polyamines (PAs), IAA and ABA, in different stages of A. sellowiana zygotic embryogenesis. Starch is the predominant storage compound during zygotic embryo development. Increased synthesis of amino acids in the cotyledonary stage, mainly of asparagine, was observed throughout development. Total free PAs showed increased synthesis, whereas total conjugated PAs were mainly observed in the early developmental stages. IAA decreased and ABA increased with the progression from early to late embryogenesis. Besides providing basic information on the morphophysiological and biochemical changes of zygotic embryogenesis, the results here obtained may provide adequate strategies towards the modulation of somatic embryogenesis in this species as well as in other woody angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antognoni F, Fornalè S, Grimmer C, Komor E, Bagni N (1998) Long-distance translocation of polyamines in phloem and xylem of Ricinus communis L. plants. Planta 204:520–527. doi:10.1007/s004250050287

    Article  CAS  Google Scholar 

  • Aribaud M, Martin-Tanguy J (1994) Polyamine metabolism, floral initiation and floral development in chrysanthemum (Chrysanthemum morifolium Ramat.). Plant Growth Regul 15:23–31. doi:10.1007/BF00024673

    Article  CAS  Google Scholar 

  • Arnold CD, Mitrenga D, Mayresbach H (1975) Gefriertro und einbsttung in glycolmethacrylat (GMA)—Ergehnisse histochemischer reaktionen. Acta histochem 14:271–277

    CAS  Google Scholar 

  • Astarita LV, Floh EIS, Handro W (2003a) Free amino acid, protein and water content changes associated with seed development in Araucaria angustifolia. Biol Plant 47:53–59. doi:10.1023/A:1027376730521

    Article  CAS  Google Scholar 

  • Astarita LV, Handro W, Floh EIS (2003b) Changes in polyamines content associated with zygotic embryogenesis in the Brazilian pine, Araucaria angustifolia (Bert.) O. Ktze. Rev Bras Bot 26:163–168. doi:10.1590/S0100-84042003000200003

    Article  CAS  Google Scholar 

  • Astarita LV, Floh EIS, Handro W (2003c) Changes in IAA, tryptophan and activity of soluble peroxidases associated with zygotic embryogenesis in Araucaria angustifolia (Brazilian pine). Plant Growth Regul 39:113–118. doi:10.1023/A:1022542618945

    Article  CAS  Google Scholar 

  • Bais HP, Havishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34. doi:10.1023/A:1015064227278

    Article  CAS  Google Scholar 

  • Bandurski RS, Cohen JD, Slovin JP, Reinecke DM (1995) Hormone biosynthesis and metabolism. In: Davies PJ (ed) Plant hormone. Physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 39–65

    Google Scholar 

  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. In Vitro Cell Dev Biol Plant 44:384–395. doi:10.1007/s11627-008-9176-4

    Article  CAS  Google Scholar 

  • Bassuner BM, Lam R, Lukowitz W, Yeung EC (2007) Auxin and root initiation in somatic embryos of Arabidopsis. Plant Cell Rep 26:1–11. doi:10.1007/s00299-006-0207-5

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Black M (1991) Abscisic acid in germination and dormancy. In: Davies WJ, Jones HJ (eds) Abscisic acid physiology and biochemistry. Bios Scientific Publishers, Oxford, pp 81–98

    Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125. doi:10.1016/S0168-9452(98)00218-0

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Cailloux F, Julien-Guerrier J, Linissier L, Coudret A (1996) Long-term somatic embryogenesis and maturation of somatic embryos in Hevea brasiliensis. Plant Sci 120:185–196. doi:10.1016/S0168-9452(96)04491-3

    Article  CAS  Google Scholar 

  • Cangahuala-Inocente GC, Dal Vesco LL, Steinmacher DA, Torres A, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Burret): induction, conversion and synthetic Seeds. Sci Hortic (Amsterdam) 11:228–234. doi:10.1016/j.scienta.2006.10.030

    Article  CAS  Google Scholar 

  • Cangahuala-Inocente GC, Steiner N, Maldonado SB, Guerra MP (2009) Patterns of protein and carbohydrate accumulation during somatic embryogenesis of Acca sellowiana. Pesq agropec bras 44:217–224

    Article  Google Scholar 

  • Canhoto JM, Cruz GS (1996) Feijoa sellowiana Berg (pineapple guava). In: Bajaj YPS (ed) Tree IV. Biotechnology in agriculture on forestry. Springer, Berlin, pp 156–172

    Google Scholar 

  • Corte VB, Lima De, e Borges EE, Pontes CA, De Almeida Leite IT, Ventrella MC, Mathias AA (2006) Mobilização de reservas durante a germinação das sementes e crescimento das plântulas de Caesalpinia peltophoroides Benth.(Leguminosae-caesalpinoideae). Rev Arvore 30(6):941–949

    Google Scholar 

  • Coruzzi G, Last R (2000) Amino acids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 358–410

    Google Scholar 

  • Dal Vesco LL, Guerra MP (2001) The effectiveness of nitrogen sources in Feijoa (Feijoa sellowiana Berg) somatic embryogenesis. Plant Cell Tissue Organ Cult 64:19–25. doi:10.1023/A:1010635926146

    Article  CAS  Google Scholar 

  • Dam S, Laursen BS, Ornfelt JH, Jochimsen B, Stærfeldt HH, Friis C, Nielsen K, Goffard N, Besenbacher S, Krusell L, Sato S, Tabata S, Thogersen IB, Enghild JJ, Stougaard J (2009) The proteome of seed development in the model legume Lotus japonicus. Plant Physiol 149:1325–1340. doi:10.1104/pp.108.133405

    Article  PubMed  CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Etienne H, Sotta B, Montoro P, Miginiac E, Carron MP (1993) Relation between exogenous growth regulators and endogenous indole-3-acetic acid and abscisic acid in expression of somatic embryogenesis in Hevea brasiliensis (Mull. Arg.). Plant Sci 88:91–96. doi:10.1016/0168-9452(93)90113-E

    Article  CAS  Google Scholar 

  • Feirer RP (1995) The biochemistry of conifer embryo development: amino acids, polyamines, and storage proteins. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. v.1. Kluwer, Dordrecht, pp 317–336

    Google Scholar 

  • Fischer-Iglesias C, Nauhaus G (2001) Zygotic embryogenesis hormonal control of embryo development. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 223–247

    Google Scholar 

  • Fischer-Iglesias C, Sundberg B, Neuhaus G, Jones AM (2001) Auxin distribution and transport during embryonic pattern formation in wheat. Plant J 26:115–129. doi:10.1046/j.1365-313x.2001.01013.x

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Scwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153. doi:10.1038/nature02085

    Article  PubMed  CAS  Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant hormones and growth regulators in plant tissue culture. In Vitro Cell Dev Biol Plant 32:272–289. doi:10.1007/BF02822700

    Article  CAS  Google Scholar 

  • Geoffriau E, Kahane R, Martin-Tanguy J (2006) Polyamines are involved in the gynogenesis process in onion. Physiol Plant 127:119–129. doi:10.1111/j.1399-3054.2006.00597.x

    Article  CAS  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102. doi:10.1016/j.pbi.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614. doi:10.1126/science.266.5185.605

    Article  PubMed  CAS  Google Scholar 

  • Kamada H, Harada H (1984) Changes in endogenous amino acids compositions during somatic embryogenesis in Daucus carota. Plant Cell Physiol 25:27–38

    CAS  Google Scholar 

  • Kermode AR (1995) Regulatory mechanisms in the transition from seed development to germination: interaction between the embryo and the seed environment. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 273–332

    Google Scholar 

  • Kong L, Attree SM, Fowke LC (1997) Changes of endogenous hormone levels in developing seeds, zygotic embryos and megagametophytes in Picea glauca. Physiol Plant 101:23–30. doi:10.1111/j.1399-3054.1997.tb01815.x

    Article  CAS  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) Advances in polyamine research in 2007. J Plant Res 120:345–350. doi:10.1007/s10265-007-0074-3

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26. doi:10.1111/j.1744-7348.2006.00104.x

    Article  CAS  Google Scholar 

  • Liu CM, Xu ZM, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  PubMed  CAS  Google Scholar 

  • Mader JC, Hanke DE (1997) Polyamine sparing may be involved in the prolongations of cell division due to inhibition of phenyl-propanoid synthesis in cytokinin starved soybean cells. J Plant Growth Regul 16:89–93. doi:10.1007/PL00006983

    Article  CAS  Google Scholar 

  • Magnus V, Nigović B, Hangarter RP, Good NE (1992) N - (indol-3-ylacetyl) amino acids as sources of auxin in plant tissue culture. J Plant Growth Regul 11:19–28. doi:10.1007/BF00193839

    Article  CAS  Google Scholar 

  • Mansfield SG, Briarty LG (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can J Bot 69:461–476. doi:10.1139/b91-063

    Article  Google Scholar 

  • Matsumoto TK, Kuehnle AR, Webb DT (1998) Zygotic embryogenesis in anthurium (araceae). Am J Bot 85:1560–1568. doi:10.2307/2446482

    Article  Google Scholar 

  • McCready RM, Guggolz J, Silveira VE, Owens HS (1950) Determination of starch an amylose in vegetables. Anal Chem 22:1156–1158. doi:10.1021/ac60045a016

    Article  CAS  Google Scholar 

  • Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis in plants. Dordrecht. Kluwer Acad Publishers Cap 5:155–203

    Google Scholar 

  • Michalczuck L, Cooke TD, Cohen JD (1992) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 4:1097–1103. doi:10.1016/0031-9422(92)80241-6

    Article  Google Scholar 

  • Misra S, Attree SM, Leal I, Fowke LC (1993) Effect of abscisic acid, osmoticum, and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. Ann Bot (Lond) 71:11–22. doi:10.1006/anbo.1993.1002

    Article  CAS  Google Scholar 

  • Mordhorst AP, Toonen MAJ, De Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576. doi:10.1080/713608156

    Article  Google Scholar 

  • Nuutila AM, Kurten U, Kauppinen V (1991) Optimization of sucrose and inorganic nitrogen concentrations for somatic embryogenesis of birch (Betula pendula Roth.) callus cultures: a statistical approach. Plant Cell Tissue Organ Cult 24:73–77. doi:10.1007/BF00039733

    Article  CAS  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1965) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373. doi:10.1007/BF01248568

    Article  Google Scholar 

  • Ortiz-Lopez A, Chang HC, Bush DR (2000) Amino acid transporters in plants. Biochim Biophys Acta 1465:275–280. doi:10.1016/S0005-2736(00)00144-9

    Article  PubMed  CAS  Google Scholar 

  • Pescador R, Kerbauy GB, Kraus JE, Ferreira WM, Guerra MP, Figueiredo-Ribeiro C (2008) Changes in soluble carbohydrates and starch amounts during somatic and zygotic embryogenesis of Acca sellowiana (Myrtaceae). In Vitro Cell Dev Biol Plant 44:289–299. doi:10.1007/s11627-008-9118-1

    Article  CAS  Google Scholar 

  • Prewein C, Endemann M, Reinöhl V, Salaj J, Sunderlikova V, Wihelm E (2006) Physiological and morphological characteristics during development of pedunculate oak (Quercus robur L.) zygotic embryos. Trees (Berl) 20:53–60. doi:10.1007/s00468-005-0012-8

    Article  CAS  Google Scholar 

  • Puga-Hermida MI, Gallardo M, Matilla AJ (2003) The zygotic embryogenesis and ripening of Brassica rapa seeds provokes important alterations in the levels of free and conjugated abscisic acid and polyamines. Physiol Plant 117:279–288. doi:10.1034/j.1399-3054.2003.00033.x

    Article  CAS  Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934

    Article  PubMed  CAS  Google Scholar 

  • Ribnicky DM, Cohen JD, Hu W, Coke TJ (2002) An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency. Planta 214:505–509. doi:10.1007/s004250100639

    Article  PubMed  CAS  Google Scholar 

  • Rock CD, Quatrano RS (1995) The role of hormones during seed development. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, pp 671–697

    Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. doi:10.1146/annurev.arplant.57.032905.105441

    Article  PubMed  CAS  Google Scholar 

  • Sallandrouze A, Faurobert M, Maâtaoui ME (2002) Characterization of the development stages of cypress zygotic embryos by two-dimensional electrophoresis and by cytochemistry. Physiol Plant 114:608–618. doi:10.1034/j.1399-3054.2002.1140415.x

    Article  PubMed  CAS  Google Scholar 

  • Santa-Catarina C, Silveira V, Balbuena TS, Viana AM, Estelita MEM, Handro W, Floh EIS (2006) IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Regul 49:237–247. doi:10.1007/s10725-006-9129-z

    Article  CAS  Google Scholar 

  • Satya-Naraian V, Nair PM (1990) Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry 29:367–375. doi:10.1016/0031-9422(90)85081-P

    Article  Google Scholar 

  • Shannon JC (1968) A procedure for the extraction and fractionation of carbohydrates from immature Zea mays kernels. Res Bull (Sun Chiwawitthaya thang Thale Phuket) 842:1–8

    Google Scholar 

  • Silveira V, Floh EIS, Handro W, Guerra MP (2004a) Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell Tissue Organ Cult 76:53–60. doi:10.1023/A:1025847515435

    Article  CAS  Google Scholar 

  • Silveira V, Balbuena TS, Santa-Catarina C, Floh EIS, Guerra MP, Handro W (2004b) Biochemical changes during zygotic embryogenesis in Pinus taeda L. Plant Growth Regul 44:147–156

    Article  CAS  Google Scholar 

  • Silveira V, Santa-Catarina C, Balbuena TS, Moraes FMS, Ricart CAO, Sousa MV, Guerra MP, Handro W, Floh EIS (2008) Endogenous abscisic acid and protein contents during seed development of Araucaria angustifolia. Biol Plant 52(1):101–104. doi:10.1007/s10535-008-0018-3

    Article  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81. doi:10.1146/annurev.arplant.51.1.49

    Article  PubMed  CAS  Google Scholar 

  • Snedden WA, Fromm H (1998) Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3:299–304. doi:10.1016/S1360-1385(98)01284-9

    Article  Google Scholar 

  • Stefanello S, Dal Vesco LL, Ducroquet JPHJ, Nodari RO, Guerra MP (2005) Somatic embryogenesis from floral tissues of feijoa (Feijoa sellowiana Berg). Sci Hortic (Amsterdam) 105:117–126. doi:10.1016/j.scienta.2004.11.006

    Article  CAS  Google Scholar 

  • Thorp G, Bieleski R (2002) Feijoas: origins, cultivation and uses. David Baterman, New Zealand, p 87

    Google Scholar 

  • Tobe PH, Raven H (1983) The embryology of Axinandra zeylanica (Crypteroniaceae) and the relationships of the genus. Bot Gaz 144(3):426–432. doi:10.1086/337393

    Article  Google Scholar 

  • Umbreit WW, Burris RH, Stauffer JF (1964) Manometric techniques. Burgess Publishing Co, Minneapolis

    Google Scholar 

  • Weber H, Borisjuk L, Wobus W (1997) Sugar import and metabolism during seed development. Trends Plant Sci 2:169–174. doi:10.1016/S1360-1385(97)85222-3

    Article  Google Scholar 

  • Wise JM, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17. doi:10.1016/j.tplants.2003.10.012

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Pedro Guerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cangahuala-Inocente, G.C., Silveira, V., Caprestano, C.A. et al. Dynamics of biochemical and morphophysiological changes during zygotic embryogenesis in Acca sellowiana (Berg.) Burr.. Plant Growth Regul 59, 103–115 (2009). https://doi.org/10.1007/s10725-009-9393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9393-9

Keywords

Navigation