Skip to main content

Advertisement

Log in

Harnessing genetic resources and progress in plant genomics for fonio (Digitaria spp.) improvement

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Fonio plays an important role in food security and in income generation, in drought prone areas of West Africa. This review aimed at highlighting fonio production constraints, breeding objectives and available genetic resources for fonio improvement. Lack of institutional support to research, lack of improved seeds, parasitic weed infestation, grain shattering, lodging and toilsome of the post-harvest handling are the major constraints limiting fonio production. These factors lead to negligence of the crop notwithstanding its high nutritional and market values. Breeding programs on fonio should first focus on solving these problems to improve overall yield. We explored the potential of mutation breeding, somaclonal variation, somatic hybridization, molecular markers, comparative genomics, individualized targeting induced local lesions in genomes (iTILLING), genotype by sequencing and genomic selection to develop improved fonio varieties. Determination of ploidy level, wide collection and characterization of fonio genetic resources, definition of core reference set collection, and exploitation of heterosis are some key research areas that would be of great interest in fonio improvement. However, this can only be achieved with adequate funding and institutional support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adoukonou-sagbadja H (2010) Genetic characterization of traditional fonio millets (Digitaria exilis, D. iburua STAPF) landraces from West-Africa: implication for conservation and breeding. Justus-Liebig University Giessen, Gießen

    Google Scholar 

  • Adoukonou-sagbadja H, Dansi A, Vodouhè R, Akpagana K (2004) Collecting fonio (Digitaria exilis (Kipp.) Stapf, D. iburua Stapf) landraces in Togo. Plant Genet Resour Newsl 139:63–67

    Google Scholar 

  • Adoukonou-Sagbadja H, Dansi A, Vodouhe R, Akpagana K (2006) Indigenous knowledge and traditional conservation of fonio millet (Digitaria exilis, Digitaria iburua) in Togo. Biodivers Conserv 15:2379–2395. doi:10.1007/s10531-004-2938-3

    Article  Google Scholar 

  • Adoukonou-Sagbadja H, Wagner C, Dansi A et al (2007) Genetic diversity and population differentiation of traditional fonio millet (Digitaria spp.) landraces from different agro-ecological zones of West Africa. Theor Appl Genet 115:917–931. doi:10.1007/s00122-007-0618-x

    Article  CAS  PubMed  Google Scholar 

  • Adoukonou-sagbadja H, Wagner C, Ordon F, Friedt W (2010) Reproductive system and molecular phylogenetic relationships of fonio millets (Digitaria spp., Poaceae) with some polyploid wild relatives. Trop Plant Biol 3:240–251. doi:10.1007/s12042-010-9063-0

    Article  Google Scholar 

  • Afrasiab H, Iqbal J (2010) In vitro techniques and mutagenesis for the genetic improvement of potato cvs. Desiree and Diamant. Pak J Bot 42:1629–1637

    Google Scholar 

  • Ahmed HMI, Gregg BR, Louwaars NP (2009) Seed systems for underutilized crops. Acta Hortic 2:459–464

    Article  Google Scholar 

  • Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim R et al (2009) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol Genet Genom 281:223–231

    Article  CAS  Google Scholar 

  • Ayenan AMT, Ezin VA (2016) Potential of Kersting’ s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet] and prospects for its promotion. Agric Food Secur 5:1–9. doi:10.1186/s40066-016-0058-4

    Article  Google Scholar 

  • Badu-Apraku B, Fakorede MAB (2006) Zea mays L. In: PROTA (Plant Resources of Tropical Africa/Ressources végétales l’Afrique tropicale)

  • Baer GI, Emets AI, Stadnichuk NA et al (2007) Somaclonal variability as a source for creation of new varieties of finger millet (Eleusine coracana (L.) Gaertn.). Cytol Genet 41:204–208. doi:10.3103/S0095452707040020

    Article  Google Scholar 

  • Ballogou VY, Soumanou MM, Toukourou F, Hounhouigan JD (2014) Indigenous knowledge on landraces and fonio-based food in benin. Ecol Food Nutr 53:390–409. doi:10.1080/03670244.2013.811388

    Article  PubMed  Google Scholar 

  • Balole TV, Legwaila GM (2006) Sorghum bicolor (L.) Moench. In: PROTA (Plant Resources of Tropical Africa/Ressources végétales l’Afrique tropicale)

  • Barnaud A, Billot C (2011) De la connaissance à la valorisation du fonio. Cah Agric 20:310–312

    Google Scholar 

  • Barnaud A, Vignes H, Risterucci A-M et al (2012) Development of nuclear microsatellite markers for the fonio, Digitaria exilis (Poaceae), an understudied West African cereal. Am J Bot 99:e105–e107. doi:10.3732/ajb.1100423

    Article  PubMed  Google Scholar 

  • Barnaud A, Vigouroux Y, Barry B et al (2013) From advanced to underutilized crops: making fonio benefit from research on major cereals in Africa. In: Massawe F, Mayes S,  Alderson P (eds) International symposium on underutilized plants species “crops for the future—beyond food security.” Acta Hortic (ISHS), vol 979. pp 421–430

  • Barnaud A, Vigouroux Y, Diallo MT et al (2017) High selfing rate inferred for white fonio [Digitaria exilis (Kippist.) Stapf] reproductive system opens up opportunities for breeding programs. Genet Resour Crop Evol. doi:10.1007/s10722-017-0515-3

    Google Scholar 

  • Blench RM (2012) Vernacular names for African millets and other minor cereals and their significance for agricultural history. Archaeol Anthropol Sci. doi:10.1007/s12520-012-0104-5

    Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20–S-32. doi:10.2135/cropsci2009.09.0531

    Article  Google Scholar 

  • Brink M (2006a) Digitaria iburua Stapf. http://uses.plantnet-project.org/en/Digitaria_exilis_(PROTA)

  • Brink M (2006b) Secale cereale L. In: PROTA (Plant Resources of Tropical Africa/Ressources végétales l’Afrique tropicale)

  • Brocklehurst PA (1977) Factors controlling grain weight in wheat. Nature 266:348–349. doi:10.1038/266348a0

    Article  Google Scholar 

  • Bush SM, Krysan PJ (2010) iTILLING: a personalized approach to the identification of induced mutations in Arabidopsis. Plant Physiol 154:25–35. doi:10.1104/pp.110.159897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clément J, Leblanc JM (1984) Collecte IBPGR-ORSTOM de 1977 au Togo. In: Prospection des Digitaria exilis (Fonio) en Afrique de l’ Ouest. ORSTOM, Marseille, France, pp 3–7

  • Clottey VA, Avornyo F, Addo-Kwafo A, Agyare WA (2006) The potential of fonio (Digitaria exilis Stapf) as feed for monogastrics. Livest Res Rural Dev 18. http://www.lrrd.org/lrrd18/7/clot18095.htm. Accessed 21 Feb 2017

  • Dachi SN, Gana AS (2008) Adaptability and yield evaluation of some Acha (Digitaria exilis and Digitaria iburua (Kippist) Stapf) accessions at Kusogi-Bida, Niger State, Nigeria. Afr J Gen Agric 4:73–77

    Google Scholar 

  • Daniell H, Lin C-S, Yu M, Chang W-J (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134. doi:10.1186/s13059-016-1004-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Dansi A, Adoukonou-sagbadja H, Vodouhe R (2010) Diversity, conservation and related wild species of Fonio millet (Digitaria spp.) in the northwest of Benin. Genet Resour Crop Evol 57:827–839. doi:10.1007/s10722-009-9522-3

    Article  Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185. doi:10.3732/ajb.1200020

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:1–10. doi:10.1371/journal.pone.0019379

    Article  Google Scholar 

  • FAO (2016) The state of food and agriculture. Rome

  • FAOSTAT (2017) Agricultural production, crop primary database. In: Food and Agriculture Organization of the United Nations. http://faostat3.fao.org/browse/Q/QC/E. Accessed 10 Feb 2017

  • Fekih R, Takagi H, Tamiru M et al (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS ONE 8(7):e68529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gigou J, Stilmant D, Diallo TA et al (2009) Fonio millet (Digitaria exilis) response to N, P and K fertilizers under varying climatic conditions in west Africa. Exp Agric 45:401–415. doi:10.1017/S0014479709990421

    Article  Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173. doi:10.1016/j.pbi.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2012) The challenge of food security. Science 327:812. doi:10.4337/9780857939388

    Article  Google Scholar 

  • He J, Zhao X, Laroche A et al (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484. doi:10.3389/fpls.2014.00484

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillocks RJ, Logan JWM, Riches CR et al (1996) Soil pests in traditional farming systems in Sub-Saharan Africa—a review. Part 1. Problems. Int J Pest Manag 42:253–265. doi:10.1080/09670879609372003

    Article  Google Scholar 

  • Hilu KW, M’Ribu K, Liang H, Mandelbaum C (1997) Fonio millets: ethnobotany, genetic diversity and evolution. S Afr J Bot 63:185–190. doi:10.1016/S0254-6299(15)30742-0

    Article  Google Scholar 

  • Hong Y, Chen L, Du LP et al (2014) Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Funct Integr Genom 14:341–349. doi:10.1007/s10142-014-0380-5

    Article  CAS  Google Scholar 

  • Jansky S (2006) Overcoming hybridization barriers in potato. Plant Breed 125:1–12. doi:10.1111/j.1439-0523.2006.01178.x

    Article  Google Scholar 

  • Jideani IA, Jideani VA (2011) Developments on the cereal grains Digitaria exilis (acha) and Digitaria iburua (iburu). J Food Sci Technol 48:251–259. doi:10.1007/s13197-010-0208-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahane R, Hodgkin T, Jaenicke H et al (2013) Agrobiodiversity for food security, health and income. Agron Sustain Dev 33:671–693. doi:10.1007/s13593-013-0147-8

    Article  Google Scholar 

  • Kaoneka SR, Saxena RK, Silim SN et al (2016) Pigeonpea breeding in eastern and southern Africa. Plant Breed 135:148–154. doi:10.1111/pbr.12340

    Article  Google Scholar 

  • Kato Y, Yoshioka H, Iba R et al (2006) A newly bred rice variety “Minamiyutaka” for whole-crop silage. Bull Miyazaki Agric Exp Stn 41:51–60 (in Japanese with English summary)

    Google Scholar 

  • Kennedy G, Nantel G, Shetty P (2003) The scourge of hidden hunger: global dimensions of micronutrient deficiencies. Food Nutr Agric 32:8–16

    Google Scholar 

  • Khan S, Tariq R, Yuanlai C, Blackwell J (2006) Can irrigation be sustainable? Agric Water Manag 80:87–99. doi:10.1016/j.agwat.2005.07.006

    Article  Google Scholar 

  • Konishi S, Izawa T, Lin SY et al (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  CAS  PubMed  Google Scholar 

  • Koreissi-Dembélé Y, Fanou-fogny N, Hulshof PJM, Brouwer ID (2013) Fonio (Digitaria exilis) landraces in Mali: nutrient and phytate content, genetic diversity and effect of processing. J Food Compos Anal 29:134–143. doi:10.1016/j.jfca.2012.07.010

    Article  Google Scholar 

  • Koroch AR, Juliani HR, Simon JE (2013) Nutritional value of fonio (Digitaria exilis) from Senegal. In: African natural plant products Volume II: discoveries and challenges in chemistry, health, and nutrition. ACS symposium series, pp 127–133

  • Krishna H, Alizadeh M, Singh D et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotechn 6:54. doi:10.1007/s13205-016-0389-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuta DD, Kwon-ndung E, Dachi S et al (2003) Potential role of biotechnology tools for genetic improvement of “lost crops of Africa”: the case of fonio (Digitaria exilis and Digitaria iburua). Afr J Biotechnol 2:580–585

    Article  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi:10.1007/BF02342540

    Article  CAS  PubMed  Google Scholar 

  • Larson G, Piperno DR, Allaby RG et al (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci 111:6139–6146. doi:10.1073/pnas.1323964111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2016) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 23:127–128. doi:10.1093/bioinformatics/btl529

    Google Scholar 

  • Li Q, Li L, Yang X et al (2010) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143. doi:10.1186/1471-2229-10-143

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Fan C, Xing Y et al (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269. doi:10.1038/ng.977

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Li X, Shannon LM et al (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet. doi:10.1038/ng.2281

    Google Scholar 

  • Louwaars NP, de Boef WS (2012) Integrated seed sector development in Africa: a conceptual framework for creating coherence between practices, programs, and policies. J Crop Improv 26:39–59. doi:10.1080/15427528.2011.611277

    Article  Google Scholar 

  • Ma L, Li T, Hao C et al (2016) TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J 14:1269–1280. doi:10.1111/pbi.12492

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141. doi:10.1016/j.tig.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  • Mariac C, Scarcelli N, Pouzadou J et al (2014) Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Mol Ecol Resour 14:1103–1113. doi:10.1111/1755-0998.12258

    Article  CAS  PubMed  Google Scholar 

  • Marouzé C, Fliedel G, Thaunay P, Cruz JF (2008) Designing a fonio mill; screening an operating principle and its validation. AMA Agric Mech Asia Africa Lat Am 39:9–15

    Google Scholar 

  • Massawe F, Mayes S, Cheng A (2016) Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci 21:365–368. doi:10.1016/j.tplants.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457. doi:10.1038/74542

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michael SJ, Davis F, Csuti B et al (1993) Gap analysis: a geographic approach to protection of biological diversity. Wildl Monogr 123:3–41

    Google Scholar 

  • Morales-payán JP, Ortiz JR, Cicero J, Taveras F (2002) Digitaria exilis as a crop in the Dominican Republic. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 1–3

    Google Scholar 

  • National Research Council (1996) Lost crops of Africa: volume I: grains. The National Academies Press, Washington

    Google Scholar 

  • Nelson GC, Rosegrant MW, Palazzo A et al (2010) Food security and climate change: challenges to 2050 and beyond. International Food Policy Research Institute, Washington

    Google Scholar 

  • Ngozi UF (2013) The role of biofortification in the reduction of micronutrient food insecurity in developing countries. Afr J Biotechnol 12:5559–5566. doi:10.5897/AJB12.560

    Google Scholar 

  • Ntui VO, Azadi P, Supaporn H, Mii M (2010) Scientia Horticulturae Plant regeneration from stem segment-derived friable callus of “Fonio” (Digitaria exilis (L.) Stapf). Sci Hortic (Amst.) 125:494–499. doi:10.1016/j.scienta.2010.04.017

    Article  CAS  Google Scholar 

  • Okuno A, Hirano K, Asano K et al (2014) New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS ONE. doi:10.1371/journal.pone.0086870

    Google Scholar 

  • Olodo KF (2016) Développement de nouveaux marqueurs microsatellites à partir du transcriptome du fonio chez les espèces cultivés (Digitaria exilis, Digitaria iburua) et sauvage (Digitaria longiflora). Master thesis, Université Cheikh Anta Diop de Dakar

  • Padulosi S, Thompson J, Rudebjer P (2013) Fighting poverty, hunger and malnutrition with neglected and underutilized species (NUS): needs, challenges and the way forward. Bioversity International, Rome

    Google Scholar 

  • Patterson SE, Bolivar-Medina JL, Falbel TG et al (2016) Are we on the right track: can our understanding of abscission in model systems promote or derail making improvements in less studied crops? Front Plant Sci 6:1268. doi:10.3389/fpls.2015.01268

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng S, Cassman KG, Virmani SS et al (1999) Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci 39:1552–1559. doi:10.2135/cropsci1999.3961552x

    Article  Google Scholar 

  • Ronald P (2011) Plant genetics, sustainable agriculture and global food security. Genetics 188:11–20. doi:10.1534/genetics.111.128553

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha D, Gowda MVC, Arya L et al (2016) Genetic and genomic resources of small millets. CRC Crit Rev Plant Sci 35:56–79. doi:10.1080/07352689.2016.1147907

    Article  CAS  Google Scholar 

  • Saidou SIDI, Bakasso Y, Inoussa MM et al (2014) Diversité agro-morphologique des accessions de fonio [Digitaria exilis (Kippist.) Stapf] au Niger. Int J Biol Chem Sci 8:1710–1729

    Article  Google Scholar 

  • Sanogo MD, Hash CT (2014) Enhancing fonio potential by intensifying production systems in partnership with farmers of Mandela, Siguila and Kobougou. http://www.ccrp.org/projects/fonio-i-ii. Accessed 08 Feb 2017

  • Sarah G, Homa F, Pointet S et al (2017) A large set of 26 new reference transcriptomes dedicated to comparative population genomics in crops and wild relatives. Mol Ecol Resour 17:565–580. doi:10.1111/1755-0998.12587

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M et al (2002) A mutant gibberellin-synthesis gene in rice. Nature 291:1–2. doi:10.1038/416701a

    Google Scholar 

  • Scarcelli N, Barnaud A, Eiserhardt W et al (2011) A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons. PLoS ONE 6:e19954. doi:10.1371/journal.pone.0019954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small E (2015) Teff & fonio—Africa’s sustainable cereals. Biodiversity 16:37–41. doi:10.1080/14888386.2014.997290

    Google Scholar 

  • Song XJ, Huang W, Shi M et al (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630. doi:10.1038/ng2014

    Article  CAS  PubMed  Google Scholar 

  • Stamp P, Messmer R, Walter A (2012) Competitive underutilized crops will depend on the state funding of breeding programmes: an opinion on the example of Europe. Plant Breed 131:461–464. doi:10.1111/j.1439-0523.2012.01990.x

    Article  Google Scholar 

  • Su Z, Hao C, Wang L et al (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223. doi:10.1007/s00122-010-1437-z

    Article  CAS  PubMed  Google Scholar 

  • Takezawa S, Cisse M (2004) Domestication des Céréales au Mema, Mali. In: Sanogo K, Togola T (eds) XIth Congress of Panafrican Association prehistory and related fields, Bamako, 07–12 Feb 2001. Soro Print Color, Bamako, pp 105–121

  • Taylor JRN, Schober TJ, Bean SR (2006) Novel food and non-food uses for sorghum and millets. J Cereal Sci 44:252–271. doi:10.1016/j.jcs.2006.06.009

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort B (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264. doi:10.1073/pnas.1116437108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vall E, Andrieu N, Beavogui F, Sogodogo D (2011) Les cultures de soudure comme stratégie de lutte contre l’insécurité alimentaire saisonnière en Afrique de l’Ouest: le cas du fonio (Digitaria exilis Stapf). Cah Agric 20:294–300

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530. doi:10.1016/j.tibtech.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  • Vodouhè SR, Achigan Dako EG (2006) Digitaria exilis (Kippist) Stapf. In: PROTA (Plant Resources of Tropical Africa/Ressources végétales l’Afrique tropicale). http://uses.plantnet-project.org/en/Digitaria_exilis_(PROTA). Accessed 6 Jan 2017

  • Vodouhe SR, Zannou A, Achigan Dako E (eds) (1998) Actes du premier atelier sur la diversité génétique du fonio (Digitaria exilis Stapf) en Afrique de l'Ouest, Conakry, Guinée, 4-6 août 1998. https://www.bioversityinternational.org/index.php?id=244&tx_news_pi1%5Bnews%5D=739&cHash=d3915d5b474597b6c3f120b2aa9bae18. Accessed 15 Feb 2017

  • Vodouhè RS, Dako GEA, Dansi A (2007) Fonio: a treasure for West Africa. Plant genetic resources and food security in West and Central Africa. Ibadan, Nigeria, pp 219–222

    Google Scholar 

  • Wu W, Liu X, Wang M et al (2017) A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants. doi:10.1038/nplants.2017.64

    Google Scholar 

Download references

Acknowledgements

We are thankful to the West Africa Agricultural Productivity Program (WAAPP/PPAAO 2A CERA 58 ID06) for funding research activities of KFO and Deutscher Akademischer Austausch Dienst (DAAD) for grants awarded to KFO. We are grateful to Alcade C. Segnon for designing the map and Dr. Moussa D. Sanogo of Institut d’Economie Rurale (IER), Mali for his worthful discussions. We also thank the two anonymous reviewers for their valuable comments. Our warmest gratitude goes to our respective institutions for facilitating access to information during the course of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahulé Elysé Boris Alladassi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayenan, M.A.T., Sodedji, K.A.F., Nwankwo, C.I. et al. Harnessing genetic resources and progress in plant genomics for fonio (Digitaria spp.) improvement. Genet Resour Crop Evol 65, 373–386 (2018). https://doi.org/10.1007/s10722-017-0565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-017-0565-6

Keywords

Navigation