Skip to main content

Advertisement

Log in

Synthesis and biological roles of O-glycans in insects

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Protein O-glycosylation is the attachment of carbohydrate structures to the oxygen atom in the hydroxyl group of Serine and Threonine residues. This post-translational modification is commonly found on the majority of proteins trafficking through the secretory pathway and is reported to influence protein characteristics such as folding, secretion, stability, solubility, oligomerization and intracellular localization. In addition, O-glycosylation is essential for cell-cell interactions, protein-protein interactions and many biological processes, such as stress response, immunization, phosphorylation, ubiquitination, cell division, metabolism and cell signaling. The availability of sequenced genomes and genetic tools to create mutants with clear phenotypes makes insects an interesting model system to study O-glycosylation. In this review, we provide an overview of the current knowledge of O-glycosylation, mainly obtained from the model organism Drosophila melanogaster, with a focus on the synthesis and biological roles of the common O-glycans in insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. SPIRO, R.G., Lucas, F., Rudall, K.: Glycosylation of hydroxylysine in collagens. Nat New Biol. 231(19), 54–55 (1971). https://doi.org/10.1038/newbio231054a0

    Article  CAS  PubMed  Google Scholar 

  2. Zarschler, K., Janesch, B., Pabst, M., Altmann, F., Messner, P., Schaffer, C.: Protein tyrosine O-glycosylation-a rather unexplored prokaryotic glycosylation system. Glycobiology. 20(6), 787–798 (2010). https://doi.org/10.1093/glycob/cwq035

    Article  PubMed  Google Scholar 

  3. Kieliszewski, M.J.: The latest hype on Hyp-O-glycosylation codes. Phytochemistry. 57(3), 319–323 (2001). https://doi.org/10.1016/S0031-9422(01)00029-2

    Article  CAS  PubMed  Google Scholar 

  4. Joshi, H.J., Narimatsu, Y., Schjoldager, K.T., Tytgat, H.L.P., Aebi, M., Clausen, H., Halim, A.: SnapShot: O-Glycosylation pathways across kingdoms. Cell. 172(3), 632–632 e632 (2018). https://doi.org/10.1016/j.cell.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  5. Hart, G.W., Haltiwanger, R.S., Holt, G.D., Kelly, W.G.: Glycosylation in the nucleus and cytoplasm. Annu. Rev. Biochem. 58, 841–874 (1989). https://doi.org/10.1146/annurev.bi.58.070189.004205

    Article  CAS  PubMed  Google Scholar 

  6. Fukuda, M.: Roles of mucin-type O-glycans in cell adhesion. Biochim. Biophys. Acta. 1573(3), 394–405 (2002). https://doi.org/10.1016/S0304-4165(02)00409-9

    Article  CAS  PubMed  Google Scholar 

  7. Chaffey, P.K., Guan, X., Chen, C., Ruan, Y., Wang, X., Tran, A.H., Koelsch, T.N., Cui, Q., Feng, Y., Tan, Z.: Structural insight into the stabilizing effect of O-glycosylation. Biochemistry. 56, 2897–2906 (2017). https://doi.org/10.1021/acs.biochem.7b00195

    Article  CAS  PubMed  Google Scholar 

  8. Chaffey, P.K., Guan, X., Wang, X., Ruan, Y., Biochemistry, L.-Y.: Quantitative effects of O-linked Glycans on protein folding. Biochemistry. 56, 4539–4548 (2017). https://doi.org/10.1021/acs.biochem.7b00483

    Article  CAS  PubMed  Google Scholar 

  9. Hart, G.W., Copeland, R.J.: Glycomics hits the big time. Cell. 143(5), 672–676 (2010). https://doi.org/10.1016/j.cell.2010.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goto, M.: Protein O-glycosylation in fungi: diverse structures and multiple functions. 71(6), 1415–1427 (2007). https://doi.org/10.1271/bbb.70080

    Article  CAS  PubMed  Google Scholar 

  11. Martinez, M.R., Dias, T.B., Natov, P.S., Zachara, N.E.: Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem. Soc. Trans. 45(1), 237–249 (2017). https://doi.org/10.1042/BST20160153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aoki, K., Porterfield, M., Lee, S.S., Dong, B., Nguyen, K., McGlamry, K.H., Tiemeyer, M.: The diversity of O-linked glycans expressed during Drosophila melanogaster development reflects stage-and tissue-specific requirements for cell signaling. J. Biol. Chem. 283(44), 30385–30400 (2008). https://doi.org/10.1074/jbc.M804925200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian, E., Hagen, K.G.: Expression of the UDP-GalNAc : polypeptide N-acetylgalactosaminyltransferase family is spatially and temporally regulated during Drosophila development. Glycobiology. 16(2), 83–95 (2006). https://doi.org/10.1093/glycob/cwj051

    Article  CAS  PubMed  Google Scholar 

  14. Tran, D.T., Ten Hagen, K.G.: Mucin-type O-glycosylation during development. J. Biol. Chem. 288(10), 6921–6929 (2013). https://doi.org/10.1074/jbc.R112.418558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamamoto-Hino, M., Yoshida, H., Ichimiya, T.: Phenotype-based clustering of glycosylation-related genes by RNAi-mediated gene silencing. Genes Cells. 20, 521–542 (2015). https://doi.org/10.1111/gtc.12246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, L., Zhang, Y., Ten Hagen, K.G.: A mucin-type O-glycosyltransferase modulates cell adhesion during Drosophila development. J. Biol. Chem. 283(49), 34076–34086 (2008). https://doi.org/10.1074/jbc.M804267200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, L., Tran, D.T., Ten Hagen, K.G.: An O-glycosyltransferase promotes cell adhesion during development by influencing secretion of an extracellular matrix integrin ligand. J. Biol. Chem. 285(25), 19491–19501 (2010). https://doi.org/10.1074/jbc.M109.098145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, L., Syed, Z.A., van Dijk Hard, I., Lim, J.M., Wells, L., Ten Hagen, K.G.: O-glycosylation regulates polarized secretion by modulating Tango1 stability. Proc. Natl. Acad. Sci. U.S.A. 111(20), 7296–7301 (2014). https://doi.org/10.1073/pnas.1322264111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, L., Turner, B., Ribbeck, K., Ten Hagen, K.G.: Loss of the mucosal barrier alters the progenitor cell niche via Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. J. Biol. Chem. 292(52), 21231–21242 (2017). https://doi.org/10.1074/jbc.M117.809848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tran, D.T., Zhang, L., Zhang, Y., Tian, E., Earl, L.A., Ten Hagen, K.G.: Multiple members of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase family are essential for viability in Drosophila. J. Biol. Chem. 287(8), 5243–5252 (2012). https://doi.org/10.1074/jbc.M111.306159

    Article  CAS  PubMed  Google Scholar 

  21. Ji, S., Samara, N.L., Revoredo, L., Zhang, L., Tran, D.T., Muirhead, K., Tabak, L.A., Ten Hagen, K.G.: A molecular switch orchestrates enzyme specificity and secretory granule morphology. Nat. Commun. 9(1), 3508 (2018). https://doi.org/10.1038/s41467-018-05978-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tian, E., Ten Hagen, K.G.: A UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase is required for epithelial tube formation. J. Biol. Chem. 282(1), 606–614 (2007). https://doi.org/10.1074/jbc.M606268200

    Article  CAS  PubMed  Google Scholar 

  23. Dönitz, J., Schmitt-Engel, C., Grossmann, D., Gerischer, L., Tech, M., Schoppmeier, M., Klingler, M., Bucher, G.: iBeetle-base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum. Nucleic Acids Res. 43(Database issue), 5–D725 (2015). https://doi.org/10.1093/nar/gku1054

    Article  CAS  Google Scholar 

  24. Kurz, S., Aoki, K., Jin, C.S., Karlsson, N.G., Tiemeyer, M., Wilson, I.B.H., Paschinger, K.: Targeted release and fractionation reveal glucuronylated and sulphated N- and O-glycans in larvae of dipteran insects. J. Proteome. 126, 172–188 (2015). https://doi.org/10.1016/j.jprot.2015.05.030

    Article  CAS  Google Scholar 

  25. Lin, Y.R., Reddy, B., Irvine, K.D.: Requirement for a core 1 galactosyltransferase in the Drosophila nervous system. Dev. Dyn. 237(12), 3703–3714 (2008). https://doi.org/10.1002/dvdy.21775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Müller, R., Hülsmeier, A.J., Altmann, F., Ten Hagen, K., Tiemeyer, M., Hennet, T.: Characterization of mucin-type core-1 β1-3 galactosyltransferase homologous enzymes in Drosophila melanogaster. FEBS J. 272(17), 4295–4305 (2005). https://doi.org/10.1111/j.1742-4658.2005.04838.x

    Article  CAS  PubMed  Google Scholar 

  27. Yoshida, H., Fuwa, T.J., Arima, M., Hamamoto, H., Sasaki, N., Ichimiya, T., Osawa, K.-i., Ueda, R., Nishihara, S.: Identification of the Drosophila core 1 1, 3-galactosyltransferase gene that synthesizes T antigen in the embryonic central nervous system and hemocytes. Glycobiology. 18(12), 1094–1104 (2008). https://doi.org/10.1093/glycob/cwn094

    Article  CAS  PubMed  Google Scholar 

  28. Itoh, K., Akimoto, Y., Fuwa, T.J., Sato, C., Komatsu, A., Nishihara, S.: Mucin-type core 1 glycans regulate the localization of neuromuscular junctions and establishment of muscle cell architecture in Drosophila. Dev. Biol. 412(1), 114–127 (2016). https://doi.org/10.1016/j.ydbio.2016.01.032

    Article  CAS  PubMed  Google Scholar 

  29. Kim, B.T., Tsuchida, K., Lincecum, J., Kitagawa, H., Bernfield, M., Sugahara, K.: Identification and characterization of three Drosophila melanogaster glucuronyltransferases responsible for the synthesis of the conserved glycosaminoglycan-protein linkage region of proteoglycans. Two novel homologs exhibit broad specificity toward oligosaccharides from proteoglycans, glycoproteins, and glycosphingolipids. J. Biol. Chem. 278(11), 9116–9124 (2003). https://doi.org/10.1074/jbc.M209344200

    Article  CAS  PubMed  Google Scholar 

  30. Itoh, K., Akimoto, Y., Kondo, S., Ichimiya, T., Aoki, K., Tiemeyer, M., Nishihara, S.: Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles. Dev. Biol. 436(2), 108–124 (2018). https://doi.org/10.1016/j.ydbio.2018.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weiszmann, R., Hammonds, A.S., Celniker, S.E.: Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos. Nat. Protoc. 4(5), 605–618 (2009). https://doi.org/10.1038/nprot.2009.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pandey, R., Blanco, J., Udolph, G.: The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in drosophila. PloS one. 6(11) (2011). https://doi.org/10.1371/journal.pone.0028106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaunitz, S., Jin, C., Nilsson, A., Liu, J., Karlsson, N.G., Holgersson, J.: Mucin-type proteins produced in the Trichoplusia ni and Spodoptera frugiperda insect cell lines carry novel O-glycans with phosphocholine and sulfate substitutions. Glycobiology. 23(7), 778–796 (2013). https://doi.org/10.1093/glycob/cwt015

    Article  CAS  PubMed  Google Scholar 

  34. Schwientek, T., Mandel, U., Roth, U., Muller, S., Hanisch, F.G.: A serial lectin approach to the mucin-type O-glycoproteome of Drosophila melanogaster S2 cells. Proteomics. 7(18), 3264–3277 (2007). https://doi.org/10.1002/pmic.200600793

    Article  CAS  PubMed  Google Scholar 

  35. Walski, T., De Schutter, K., Van Damme, E.J.M., Smagghe, G.: Diversity and functions of protein glycosylation in insects. Insect Biochem. Mol. Biol. 83, 21–34 (2017). https://doi.org/10.1016/j.ibmb.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  36. Bond, M.R., Hanover, J.A.: A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208(7), 869–880 (2015). https://doi.org/10.1083/jcb.201501101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holt, G.D., Hart, G.W.: The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261(17), 8049–8057 (1986)

    CAS  PubMed  Google Scholar 

  38. Ogawa, M., Sawaguchi, S., Furukawa, K., Okajima, T.: N-acetylglucosamine modification in the lumen of the endoplasmic reticulum. Biochim. Biophys. Acta. 1850(6), 1319–1324 (2015). https://doi.org/10.1016/j.bbagen.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  39. Yang, X., Qian, K.: Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18(7), 452–465 (2017). https://doi.org/10.1038/nrm.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park, S., Park, S.-H., Baek, J.Y., Jy, Y.J., Kim, K.S., Roth, J., Cho, J.W., Choe, K.-M.: Protein O-GlcNAcylation regulates Drosophila growth through the insulin signaling pathway. Cell. Mol. Life Sci. 68(20), 3377–3384 (2011). https://doi.org/10.1007/s00018-011-0640-7

    Article  CAS  PubMed  Google Scholar 

  41. Sekine, O., Love, D.C., Rubenstein, D.S., Hanover, J.A.: Blocking O-linked GlcNAc cycling in Drosophila insulin-producing cells perturbs glucose-insulin homeostasis. J. Biol. Chem. 285(49), 38684–38691 (2010). https://doi.org/10.1074/jbc.M110.155192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pekkurnaz, G., Trinidad, J.C., Wang, X., Kong, D., Schwarz, T.L.: Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell. 158(1), 54–68 (2014). https://doi.org/10.1016/j.cell.2014.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hart, G.W., Slawson, C., Ramirez-Correa, G., Lagerlof, O.: Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011). https://doi.org/10.1146/annurev-biochem-060608-102511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sinclair, D.A., Syrzycka, M., Macauley, M.S., Rastgardani, T., Komljenovic, I., Vocadlo, D.J., Brock, H.W., Honda, B.M.: Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. U. S. A. 106(32), 13427–13432 (2009). https://doi.org/10.1073/pnas.0904638106

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lagerlöf, O., Hart, G.W., Huganir, R.L.: O-GlcNAc transferase regulates excitatory synapse maturity. Proc. Natl. Acad. Sci. U.S.A. (2017). https://doi.org/10.1073/pnas.1621367114

    Article  Google Scholar 

  46. Gambetta, M.C., Oktaba, K., Muller, J.: Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science. 325(5936), 93–96 (2009). https://doi.org/10.1126/science.1169727

    Article  CAS  PubMed  Google Scholar 

  47. Gambetta, M.C., Muller, J.: O-GlcNAcylation prevents aggregation of the Polycomb group repressor polyhomeotic. Dev. Cell. 31(5), 629–639 (2014). https://doi.org/10.1016/j.devcel.2014.10.020

    Article  CAS  PubMed  Google Scholar 

  48. Mariappa, D., Ferenbach, A.T., van Aalten, D.M.F.: Effects of hypo-O-GlcNAcylation on Drosophila development. J. Biol. Chem. 293(19), 7209–7221 (2018). https://doi.org/10.1074/jbc.RA118.002580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Radermacher, P.T., Myachina, F., Bosshardt, F., Pandey, R., Mariappa, D., Muller, H.A.J., Lehner, C.F.: O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development. Proc. Natl. Acad. Sci. U.S.A. 111(15), 5592–5597 (2014). https://doi.org/10.1073/pnas.1322396111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leney, A.C., Atmioui, E.D., Wu, W.: Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proc. Natl. Acad. Sci. U.S.A. (2017). https://doi.org/10.1073/pnas.1620529114

    Article  CAS  Google Scholar 

  51. Kim, E.Y., Jeong, E.H., Park, S., Jeong, H.J., Edery, I., Cho, J.W.: A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26(5), 490–502 (2012). https://doi.org/10.1101/gad.182378.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaasik, K., Kivimae, S., Allen, J.J., Chalkley, R.J., Huang, Y., Baer, K., Kissel, H., Burlingame, A.L., Shokat, K.M., Ptacek, L.J., Fu, Y.H.: Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 17(2), 291–302 (2013). https://doi.org/10.1016/j.cmet.2012.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Draime, A., Bridoux, L., Belpaire, M., Pringels, T., Degand, H., Morsomme, P., Rezsohazy, R.: The O-GlcNAc transferase OGT interacts with and post-translationally modifies the transcription factor HOXA1. FEBS Lett. 592, 1185–1201 (2018). https://doi.org/10.1002/1873-3468.13015

    Article  CAS  PubMed  Google Scholar 

  54. Liu, T.W., Myschyshyn, M., Sinclair, D.A., Cecioni, S., Beja, K., Honda, B.M., Morin, R.D., Vocadlo, D.J.: Genome-wide chemical mapping of O-GlcNAcylated proteins in Drosophila melanogaster. Nat. Chem. Biol. 13(2), 161–167 (2017). https://doi.org/10.1038/nchembio.2247

    Article  CAS  PubMed  Google Scholar 

  55. Park, S., Lee, Y., Pak, J.W., Kim, H., Choi, H., Kim, J.-W., Roth, J., Cho, J.W.: O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster. Cell. Mol. Life Sci. 72(16), 3173–3183 (2015). https://doi.org/10.1007/s00018-015-1889-z

    Article  CAS  PubMed  Google Scholar 

  56. Sümegi, M., Hunyadi-Gulyás, É., Medzihradszky, K.F., Udvardy, A.: 26S proteasome subunits are O-linked N-acetylglucosamine-modified in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 312(4), 1284–1289 (2003). https://doi.org/10.1016/j.bbrc.2003.11.074

    Article  CAS  PubMed  Google Scholar 

  57. Varshney, S., Stanley, P.: EOGT and O-GlcNAc on secreted and membrane proteins. Biochem. Soc. Trans. 45(2), 401–408 (2017). https://doi.org/10.1042/BST20160165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alfaro, J.F., Gong, C.X., Monroe, M.E., Aldrich, J.T., Clauss, T.R., Purvine, S.O., Wang, Z., Camp 2nd, D.G., Shabanowitz, J., Stanley, P., Hart, G.W., Hunt, D.F., Yang, F., Smith, R.D.: Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc. Natl. Acad. Sci. U.S.A. 109(19), 7280–7285 (2012). https://doi.org/10.1073/pnas.1200425109

    Article  PubMed  PubMed Central  Google Scholar 

  59. Haltom, A.R., Jafar-Nejad, H.: O-linked glycans in drosophila drosophila development: Overview. In: Glycoscience: Biology and Medicine. pp. 809–815. Springer, (2015)

  60. Sakaidani, Y., Nomura, T., Matsuura, A., Ito, M., Suzuki, E., Murakami, K., Nadano, D., Matsuda, T., Furukawa, K., Okajima, T.: O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat. Commun. 2, 583 (2011). https://doi.org/10.1038/ncomms1591

    Article  CAS  PubMed  Google Scholar 

  61. Müller, R., Jenny, A., Stanley, P.: The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One. 8, e62835 (2013). https://doi.org/10.1371/journal.pone.0062835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kelly, W.G., Hart, G.W.: Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell. 57(2), 243–251 (1989). https://doi.org/10.1016/0092-8674(89)90962-8

    Article  CAS  PubMed  Google Scholar 

  63. Shaheen, R., Aglan, M., Keppler-Noreuil, K.: Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams-Oliver syndrome. Am. J. Hum. Genet. 92, 598–604 (2013). https://doi.org/10.1016/j.ajhg.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Varshney, S., Stanley, P.: Multiple roles for O-Glycans in notch signalling. FEBS Lett. 592(23), 3819–3834 (2018). https://doi.org/10.1002/1873-3468.13251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Selvan, N., Williamson, R., Mariappa, D., Campbell, D.G., Gourlay, R., Ferenbach, A.T., Aristotelous, T., Hopkins-Navratilova, I., Trost, M., van Aalten, D.M.F.: A mutant O-GlcNAcase enriches Drosophila developmental regulators. Nat. Chem. Biol. 13(8), 882–887 (2017). https://doi.org/10.1038/nchembio.2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sprung, R., Nandi, A., Chen, Y., Kim, S.C., Barma, D., Falck, J.R., Zhao, Y.: Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J. Proteome Res. 4(3), 950–957 (2005). https://doi.org/10.1021/pr050033j

    Article  CAS  PubMed  Google Scholar 

  67. Ishio, A., Sasamura, T., Ayukawa, T., Kuroda, J., Ishikawa, H.O., Aoyama, N., Matsumoto, K., Gushiken, T., Okajima, T., Yamakawa, T.: O-fucose monosaccharide of Drosophila notch has a temperature-sensitive function and cooperates with O-glucose glycan in notch transport and notch signaling activation. J. Biol. Chem. 290(1), 505–519 (2015). https://doi.org/10.1074/jbc.M114.616847

    Article  CAS  PubMed  Google Scholar 

  68. Okajima, T., Xu, A., Lei, L., Irvine, K.D.: Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science. 307(5715), 1599–1603 (2005). https://doi.org/10.1126/science.1108995

    Article  CAS  PubMed  Google Scholar 

  69. Luo, Y., Koles, K., Vorndam, W., Haltiwanger, R.S., Panin, V.M.: Protein O-fucosyltransferase 2 adds O-fucose to thrombospondin type 1 repeats. J. Biol. Chem. 281(14), 9393–9399 (2006). https://doi.org/10.1074/jbc.M511975200

    Article  CAS  PubMed  Google Scholar 

  70. Okajima, T., Xu, A.G., Irvine, K.D.: Modulation of notch-ligand binding by protein O-Fucosyltransferase 1 and fringe. J. Biol. Chem. 278(43), 42340–42345 (2003). https://doi.org/10.1074/jbc.M308687200

    Article  CAS  PubMed  Google Scholar 

  71. Sasamura, T., Ishikawa, H.O., Sasaki, N., Higashi, S., Kanai, M., Nakao, S., Ayukawa, T., Aigaki, T., Noda, K., Miyoshi, E.: The O-fucosyltransferase O-fut1 is an extracellular component that is essential for the constitutive endocytic trafficking of notch in Drosophila. Development. 134(7), 1347–1356 (2007). https://doi.org/10.1242/dev.02811

    Article  CAS  PubMed  Google Scholar 

  72. Okajima, T., Irvine, K.D.: Regulation of notch signaling by O-linked fucose. Cell. 111(6), 893–904 (2002). https://doi.org/10.1016/S0092-8674(02)01114-5

    Article  CAS  PubMed  Google Scholar 

  73. Glavic, A., Lopez-Varea, A., de Cells, J.F.: The balance between GMD and OFUT1 regulates notch signaling pathway activity by modulating notch stability. Biol. Res. 44(1), 25–34 (2011). https://doi.org/10.4067/S0716-97602011000100004

    Article  CAS  PubMed  Google Scholar 

  74. Moloney, D.J., Panin, V.M., Johnston, S.H., Chen, J.H., Shao, L., Wilson, R., Wang, Y., Stanley, P., Irvine, K.D., Haltiwanger, R.S., Vogt, T.F.: Fringe is a glycosyltransferase that modifies notch. Nature. 406(6794), 369–375 (2000). https://doi.org/10.1038/35019000

    Article  CAS  PubMed  Google Scholar 

  75. Munro, S., Freeman, M.: The notch signalling regulator fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DXD. Curr. Biol. 10(14), 813–820 (2000). https://doi.org/10.1016/S0960-9822(00)00578-9

    Article  CAS  PubMed  Google Scholar 

  76. LeBon, L., Lee, T.V., Sprinzak, D., Jafar-Nejad, H., Elowitz, M.B.: Fringe proteins modulate notch-ligand cis and trans interactions to specify signaling states. eLife. 3, e02950 (2014). https://doi.org/10.7554/eLife.02950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu, A., Haines, N., Dlugosz, M., Rana, N.A., Takeuchi, H., Haltiwanger, R.S., Irvine, K.D.: In vitro reconstitution of the modulation of Drosophila notch-ligand binding by fringe. J. Biol. Chem. 282(48), 35153–35162 (2007). https://doi.org/10.1074/jbc.M707040200

    Article  CAS  PubMed  Google Scholar 

  78. Cho, K.O., Choi, K.W.: Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature. 396(6708), 272–276 (1998). https://doi.org/10.1038/24394

    Article  CAS  PubMed  Google Scholar 

  79. Zhao, D.B., Clyde, D., Bownes, M.: Expression of fringe is down regulated by Gurken/epidermal growth factor receptor signalling and is required for the morphogenesis of ovarian follicle cells. J. Cell Sci. 113(21), 3781–3794 (2000)

    CAS  PubMed  Google Scholar 

  80. Irvine, K.D., Wieschaus, E.: Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during drosophila wing development. Cell. 79(4), 595–606 (1994). https://doi.org/10.1016/0092-8674(94)90545-2

    Article  CAS  PubMed  Google Scholar 

  81. Correia, T., Papayannopoulos, V., Panin, V., Woronoff, P., Jiang, J., Vogt, T.F., Irvine, K.D.: Molecular genetic analysis of the glycosyltransferase fringe in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 100(11), 6404–6409 (2003). https://doi.org/10.1073/pnas.1131007100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gelbart, W., Emmert, D.: Flybase high throughput expression pattern data. FlyBase Analysis (flybaseorg/reports/FBrf0221009html 29 October 2013, date last accessed) (2013)

  83. Mummery-Widmer, J.L., Yamazaki, M., Stoeger, T., Novatchkova, M., Bhalerao, S., Chen, D., Dietzl, G., Dickson, B.J., Knoblich, J.A.: Genome-wide analysis of notch signalling in Drosophila by transgenic RNAi. Nature. 458(7241), 987–992 (2009). https://doi.org/10.1038/nature07936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hofsteenge, J., Huwiler, K.G., Macek, B., Hess, D., Lawler, J., Mosher, D.F., Peter-Katalinic, J.: C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J. Biol. Chem. 276(9), 6485–6498 (2001). https://doi.org/10.1074/jbc.M008073200

    Article  CAS  PubMed  Google Scholar 

  85. Tepass, U., Theres, C., Knust, E.: Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell. 61(5), 787–799 (1990). https://doi.org/10.1016/0092-8674(90)90189-L

    Article  CAS  PubMed  Google Scholar 

  86. Lyalin, D., Koles, K., Roosendaal, S.D., Repnikova, E., Van Wechel, L., Panin, V.M.: The twisted gene encodes Drosophila protein O-mannosyltransferase 2 and genetically interacts with the rotated abdomen gene encoding Drosophila protein O-mannosyltransferase 1. Genetics. 172(1), 343–353 (2006). https://doi.org/10.1534/genetics.105.049650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ichimiya, T., Manya, H., Ohmae, Y., Yoshida, H., Takahashi, K., Ueda, R., Endo, T., Nishihara, S.: The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J. Biol. Chem. 279(41), 42638–42647 (2004). https://doi.org/10.1074/jbc.M404900200

    Article  CAS  PubMed  Google Scholar 

  88. Haines, N., Seabrooke, S., Stewart, B.A.: Dystroglycan and protein O-mannosyltransferases 1 and 2 are required to maintain integrity of Drosophila larval muscles. Mol. Biol. Cell. 18(12), 4721–4730 (2007). https://doi.org/10.1091/mbc.E07-01-0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Baker, R., Nakamura, N., Chandel, I., of …, H.-B.: Protein O-mannosyltransferases affect sensory axon wiring and dynamic chirality of body posture in the Drosophila embryo. J. Neurosci. 38(7), 1850–1865 (2017). https://doi.org/10.1523/JNEUROSCI.0346-17.2017

    Article  PubMed  Google Scholar 

  90. Cooley, L., Kelley, R., Spradling, A.: Insertional mutagenesis of the Drosophila genome with single P-elements. Science. 239(4844), 1121–1128 (1988). https://doi.org/10.1126/science.2830671

    Article  CAS  PubMed  Google Scholar 

  91. Ueyama, M., Akimoto, Y., Ichimiya, T., Ueda, R., Kawakami, H., Aigaki, T., Nishihara, S.: Increased apoptosis of myoblasts in Drosophila model for the Walker-Warburg syndrome. PLoS One. 5(7), e11557 (2010). https://doi.org/10.1371/journal.pone.0011557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakamura, N., Stalnaker, S.H., Lyalin, D., Lavrova, O., Wells, L., Panin, V.M.: Drosophila Dystroglycan is a target of O-mannosyltransferase activity of two protein O-mannosyltransferases, rotated abdomen and twisted. Glycobiology. 20(3), 381–394 (2010). https://doi.org/10.1093/glycob/cwp189

    Article  CAS  PubMed  Google Scholar 

  93. Yatsenko, A.S., Gray, E.E., Shcherbata, H.R., Patterson, L.B., Sood, V.D., Kucherenko, M.M., Baker, D., Ruohola-Baker, H.: A putative Src homology 3 domain binding motif but not the C-terminal dystrophin WW domain binding motif is required for dystroglycan function in cellular polarity in Drosophila. J. Biol. Chem. 282(20), 15159–15169 (2007). https://doi.org/10.1074/jbc.M608800200

    Article  CAS  PubMed  Google Scholar 

  94. Soya, S., Şahar, U., Karaçalı, S.: Monosaccharide profiling of silkworm (Bombyx mori L.) nervous system during development and aging. Invertebr. Neurosci. 16(3), 8 (2016). https://doi.org/10.1007/s10158-016-0191-6

    Article  CAS  Google Scholar 

  95. Takeuchi, H., Kantharia, J., Sethi, M.K., Bakker, H., Haltiwanger, R.S.: Site-specific O-glucosylation of the epidermal growth factor-like (EGF) repeats of notch: efficiency of glycosylation is affected by proper folding and amino acid sequence of individual EGF repeats. J. Biol. Chem. 287(41), 33934–33944 (2012). https://doi.org/10.1074/jbc.M112.401315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stanley, P.: Glucose: a novel regulator of notch signaling. ACS Chem. Biol. 3(4), 210–213 (2008). https://doi.org/10.1021/cb800073x

    Article  CAS  PubMed  Google Scholar 

  97. Matsumoto, K., Ayukawa, T., Ishio, A., Sasamura, T., Yamakawa, T., Matsuno, K.: Dual roles of O-glucose glycans redundant with monosaccharide O-Fucose on notch in notch trafficking. J. Biol. Chem. 291(26), 13743–13752 (2016). https://doi.org/10.1074/jbc.M115.710483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Haltom, A.R., Lee, T.V., Harvey, B.M., Leonardi, J., Chen, Y.J., Hong, Y., Haltiwanger, R.S., Jafar-Nejad, H.: The protein O-glucosyltransferase Rumi modifies eyes shut to promote rhabdomere separation in Drosophila. PLoS Genet. 10(11), e1004795 (2014). https://doi.org/10.1371/journal.pgen.1004795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Takeuchi, H., Fernandez-Valdivia, R.C., Caswell, D.S., Nita-Lazar, A., Rana, N.A., Garner, T.P., Weldeghiorghis, T.K., Macnaughtan, M.A., Jafar-Nejad, H., Haltiwanger, R.S.: Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase. Proc. Natl. Acad. Sci. U.S.A. 108(40), 16600–16605 (2011). https://doi.org/10.1073/pnas.1109696108

    Article  PubMed  PubMed Central  Google Scholar 

  100. Leonardi, J., Fernandez-Valdivia, R., Li, Y.-D., Simcox, A.A., Jafar-Nejad, H.: Multiple O-glucosylation sites on notch function as a buffer against temperature-dependent loss of signaling. Development. 138(16), 3569–3578 (2011). https://doi.org/10.1242/dev.068361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Acar, M., Jafar-Nejad, H., Takeuchi, H., Rajan, A., Ibrani, D., Rana, N.A., Pan, H., Haltiwanger, R.S., Bellen, H.J.: Rumi is a CAP10 domain glycosyltransferase that modifies notch and is required for notch signaling. Cell. 132(2), 247–258 (2008). https://doi.org/10.1016/j.cell.2007.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rana, N.A., Nita-Lazar, A., Takeuchi, H., Kakuda, S., Luther, K.B., Haltiwanger, R.S.: O-glucose Trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. J. Biol. Chem. 286(36), 31623–31637 (2011). https://doi.org/10.1074/jbc.M111.268243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Whitworth, G.E., Zandberg, W.F., Clark, T., Vocadlo, D.J.: Mammalian notch is modified by D-Xyl-alpha 1-3-D-Xyl-alpha 1-3-D-Glc-beta 1-O-Ser: implementation of a method to study O-glucosylation. Glycobiology. 20(3), 287–299 (2010). https://doi.org/10.1093/glycob/cwp173

    Article  CAS  PubMed  Google Scholar 

  104. Pandey, A., Li-Kroeger, D., Sethi, M.K., Lee, T.V., Buettner, F.F.R., Bakker, H., Jafar-Nejad, H.: Sensitized genetic backgrounds reveal differential roles for EGF repeat xylosyltransferases in Drosophila notch signaling. Glycobiology. 28(11), 849–859 (2018). https://doi.org/10.1093/glycob/cwy080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, T.V., Pandey, A., Jafar-Nejad, H.: Xylosylation of the Notch receptor preserves the balance between its activation by trans-Delta and inhibition by cis-ligands in Drosophila. PLoS Genet. 13(4) (2017). https://doi.org/10.1371/journal.pgen.1006723

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lee, T.V., Sethi, M.K., Leonardi, J., Rana, N.A., Buettner, F.F.R., Haltiwanger, R.S., Bakker, H., Jafar-Nejad, H.: Negative regulation of notch signaling by xylose. PLoS Genet. 9(6), e1003547 (2013). https://doi.org/10.1371/journal.pgen.1003547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the Special Research Fund from Ghent University (Belgium). W.L. is a recipient of a Chinese Scholarship Council (CSC) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Smagghe.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., De Schutter, K., Van Damme, E.J.M. et al. Synthesis and biological roles of O-glycans in insects. Glycoconj J 37, 47–56 (2020). https://doi.org/10.1007/s10719-019-09867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09867-1

Keywords

Navigation