Skip to main content

Advertisement

Log in

Enrichment and characterization of a bacterial mixture capable of utilizing C-mannosyl tryptophan as a carbon source

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

C-Mannosylation, a protein-modification found in various eukaryotes, involves the attachment of a single mannose molecule to selected tryptophan residues of proteins. Since C-mannosyl tryptophan (CMW) was detected in human urine, it is generally thought that CMW is not catabolized inside our body and instead is excreted via the urine. This paper reports enrichment of a bacterial consortium from soil that degrades CMW. The bacteria grew in minimal medium supplemented with CMW as the carbon source. Interestingly, even after successive clonal picks of individual colonies, several species were still present in each colony as revealed by 16S rRNA gene sequence analysis, indicating that a single species may not be responsible for this activity. A next generation sequencing (NGS) analysis was therefore carried out in order to determine which bacteria were responsible for the catabolism of CMW. It was found that a species of Sphingomonadaceae family, but not others, increased with simultaneous decrease of CMW in the media, suggesting that this species is most likely the one that is actively involved in the degradation of CMW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CMW:

C-Mannosyl tryptophan

MM3Y:

Minimal medium with yeast extract

NGS:

Next generation sequencing

SEM:

Scanning electron microscopy

JCM:

Japan collection of microorganisms

NBRC:

NITE biological resource center

References

  1. Hofsteenge, J., Huwiler, K.G., Macek, B., Hess, D., Lawler, J., Mosher, D.F., Peter-Katalinic, J.: C-mannosylation and O-Fucosylation of the Thrombospondin type 1 module. J. Biol. Chem. 276, 6485–6498 (2001). https://doi.org/10.1074/jbc.M008073200

    Article  CAS  PubMed  Google Scholar 

  2. de Peredo, A.G., Klein, D., Macek, B., Hess, D., Peter-Katalinic, J., Hofsteenge, J.: C-mannosylation and o-fucosylation of thrombospondin type 1 repeats. Mol. Cell. Proteomics MCP. 1, 11–18 (2002)

    Article  Google Scholar 

  3. Furmanek, A., Hofsteenge, J.: Protein C-mannosylation: facts and questions. Acta Biochim. Pol. 47, 781–789 (1999)

    Google Scholar 

  4. Buettner, F.F.R., Ashikov, A., Tiemann, B., Lehle, L., Bakker, H.: C. Elegans DPY-19 is a C-mannosyltransferase glycosylating Thrombospondin repeats. Mol. Cell. 50, 295–302 (2013). https://doi.org/10.1016/j.molcel.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  5. Niwa, Y., Suzuki, T., Dohmae, N., Simizu, S.: Identification of DPY19L3 as the C-mannosyltransferase of R-spondin1 in human cells. Mol. Biol. Cell. mbc.E15–06-0373 (2016). https://doi.org/10.1091/mbc.E15-06-0373

  6. Shcherbakova, A., Tiemann, B., Buettner, F.F.R., Bakker, H.: Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proc. Natl. Acad. Sci. 114, 2574–2579 (2017). https://doi.org/10.1073/pnas.1613165114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hofsteenge, J., Mueller, D.R., de Beer, T., Loeffler, A., Richter, W.J., Vliegenthart, J.F.G.: New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase us. Biochemistry (Mosc). 33, 13524–13530 (1994). https://doi.org/10.1021/bi00250a003

    Article  CAS  Google Scholar 

  8. Ihara, Y., Inai, Y., Ikezaki, M., Matsui, I.-S.L., Manabe, S., Ito, Y.: C-mannosylation: Modification on Tryptophan in Cellular Proteins. In: Glycoscience: Biology and Medicine. pp. 1091–1099. Springer (2015)

  9. Hofsteenge, J., Blommers, M., Hess, D., Furmanek, A., Miroshnichenko, O.: The four terminal components of the complement system are C-mannosylated on multiple tryptophan residues. J. Biol. Chem. 274, 32786–32794 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Doucey, M.-A., Hess, D., Blommers, M.J.J., Hofsteenge, J.: Recombinant human interleukin-12 is the second example of a C-mannosylated protein. Glycobiology. 9, 435–441 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Hartmann, S., Hofsteenge, J.: Properdin, the positive regulator of complement, is highly C-mannosylated. J. Biol. Chem. 275, 28569–28574 (2000). https://doi.org/10.1074/jbc.M001732200

    Article  CAS  PubMed  Google Scholar 

  12. Perez-Vilar, J., Randell, S.H., Boucher, R.C.: C-mannosylation of MUC5AC and MUC5B Cys subdomains. Glycobiology. 14, 325–337 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Furmanek, A., Hess, D., Rogniaux, H., Hofsteenge, J.: The WSAWS motif is C-Hexosylated in a soluble form of the erythropoietin receptor. Biochemistry (Mosc). 42, 8452–8458 (2003). https://doi.org/10.1021/bi034112p

    Article  CAS  Google Scholar 

  14. Ihara, Y., Manabe, S., Kanda, M., Kawano, H., Nakayama, T., Sekine, I., Kondo, T., Ito, Y.: Increased expression of protein C-mannosylation in the aortic vessels of diabetic Zucker rats. Glycobiology. 15, 383–392 (2005). https://doi.org/10.1093/glycob/cwi012

    Article  CAS  PubMed  Google Scholar 

  15. Ervin, L.A., Ball, L.E., Crouch, R.K., Schey, K.L.: Phosphorylation and glycosylation of bovine lens MP20. Invest. Ophthalmol. Vis. Sci. 46, 627–635 (2005). https://doi.org/10.1167/iovs.04-0894

    Article  PubMed  Google Scholar 

  16. Patwardhan, A.J., Strittmatter, E.F., Camp, D.G., Smith, R.D., Pallavicini, M.G.: Comparison of normal and breast cancer cell lines using proteome, genome, and Interactome data. J. Proteome Res. 4, 1952–1960 (2005). https://doi.org/10.1021/pr0501315

    Article  CAS  PubMed  Google Scholar 

  17. Falzarano, D., Krokhin, O., Van Domselaar, G., Wolf, K., Seebach, J., Schnittler, H.-J., Feldmann, H.: Ebola sGP—the first viral glycoprotein shown to be C-mannosylated. Virology. 368, 83–90 (2007). https://doi.org/10.1016/j.virol.2007.06.015

    Article  CAS  PubMed  Google Scholar 

  18. Munte, C.E., Gäde, G., Domogalla, B., Kremer, W., Kellner, R., Kalbitzer, H.R.: C-mannosylation in the hypertrehalosaemic hormone from the stick insect Carausius morosus. FEBS J. 275, 1163–1173 (2008). https://doi.org/10.1111/j.1742-4658.2008.06277.x

    Article  CAS  PubMed  Google Scholar 

  19. Li, Y., Cao, C., Jia, W., Yu, L., Mo, M., Wang, Q., Huang, Y., Lim, J.-M., Ishihara, M., Wells, L., Azadi, P., Robinson, H., He, Y.-W., Zhang, L., Mariuzza, R.A.: Structure of the F-spondin domain of mindin, an integrin ligand and pattern recognition molecule. EMBO J. 28, 286–297 (2009). https://doi.org/10.1038/emboj.2008.288

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, L.W., Leonhard-Melief, C., Haltiwanger, R.S., Apte, S.S.: Post-translational modification of Thrombospondin Type-1 repeats in ADAMTS-like 1/Punctin-1 by C-mannosylation of tryptophan. J. Biol. Chem. 284, 30004–30015 (2009). https://doi.org/10.1074/jbc.M109.038059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao, H., Sagert, J., Hwang, D.S., Waite, J.H.: Glycosylated Hydroxytryptophan in a mussel adhesive protein from Perna Viridis. J. Biol. Chem. 284, 23344–23352 (2009). https://doi.org/10.1074/jbc.M109.022517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamming, O.J., Kang, L., Svensson, A., Karlsen, J.L., Rahbek-Nielsen, H., Paludan, S.R., Hjorth, S.A., Bondensgaard, K., Hartmann, R.: Crystal structure of interleukin-21 receptor (IL-21R) bound to IL-21 reveals that sugar chain interacting with WSXWS motif is integral part of IL-21R. J. Biol. Chem. 287, 9454–9460 (2012). https://doi.org/10.1074/jbc.M111.311084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goto, Y., Niwa, Y., Suzuki, T., Dohmae, N., Umezawa, K., Simizu, S.: C-mannosylation of human hyaluronidase 1: possible roles for secretion and enzymatic activity. Int. J. Oncol. 45, 344–350 (2014). https://doi.org/10.3892/ijo.2014.2438

    Article  CAS  PubMed  Google Scholar 

  24. Sorvillo, N., Kaijen, P.H., Matsumoto, M., Fujimura, Y., van der Zwaan, C., Verbij, F.C., Pos, W., Fijnheer, R., Voorberg, J., Meijer, A.B.: Identification of N-linked glycosylation and putative O-fucosylation, C-mannosylation sites in plasma derived ADAMTS13. J. Thromb. Haemost. 12, 670–679 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Sasazawa, Y., Sato, N., Suzuki, T., Dohmae, N., Simizu, S.: C-mannosylation of thrombopoietin receptor (c-Mpl) regulates thrombopoietin-dependent JAK-STAT signaling. Biochem. Biophys. Res. Commun. 468, 262–268 (2015). https://doi.org/10.1016/j.bbrc.2015.10.116

    Article  CAS  PubMed  Google Scholar 

  26. Verbij, F.C., Stokhuijzen, E., Kaijen, P.H.P., van Alphen, F., Meijer, A.B., Voorberg, J.: Identification of glycans on plasma-derived ADAMTS13. Blood. 128, e51–e58 (2016). https://doi.org/10.1182/blood-2016-06-720912

    Article  CAS  PubMed  Google Scholar 

  27. Fujiwara, M., Kato, S., Niwa, Y., Suzuki, T., Tsuchiya, M., Sasazawa, Y., Dohmae, N., Simizu, S.: C-mannosylation of R-spondin3 regulates its secretion and activity of Wnt/β-catenin signaling in cells. FEBS Lett. 590, 2639–2649 (2016). https://doi.org/10.1002/1873-3468.12274

    Article  CAS  PubMed  Google Scholar 

  28. Pronker, M.F., Lemstra, S., Snijder, J., Heck, A.J.R., Thies-Weesie, D.M.E., Pasterkamp, R.J., Janssen, B.J.C.: Structural basis of myelin-associated glycoprotein adhesion and signalling. Nat. Commun. 7, (2016). https://doi.org/10.1038/ncomms13584

  29. Okamoto, S., Murano, T., Suzuki, T., Uematsu, S., Niwa, Y., Sasazawa, Y., Dohmae, N., Bujo, H., Simizu, S.: Regulation of secretion and enzymatic activity of lipoprotein lipase by C-mannosylation. Biochem. Biophys. Res. Commun. 486, 558–563 (2017). https://doi.org/10.1016/j.bbrc.2017.03.085

    Article  CAS  PubMed  Google Scholar 

  30. Takahira, R., Yonemura, K., Yonekawa, O., Iwahara, K., Kanno, T., Fujise, Y., Hishida, A.: Tryptophan glycoconjugate as a novel marker of renal function. Am. J. Med. 110, 192–197 (2001). https://doi.org/10.1016/S0002-9343(00)00693-8

    Article  CAS  PubMed  Google Scholar 

  31. Garcia, A., Lenis, L.A., Jiménez, C., Debitus, C., Quiñoá, E., Riguera, R.: The occurrence of the human Glycoconjugate C2-α-d-mannosylpyranosyl-l-tryptophan in marine ascidians. Org. Lett. 2, 2765–2767 (2000). https://doi.org/10.1021/ol0061384

    Article  CAS  PubMed  Google Scholar 

  32. Gabant, M., Martin, M.-T., Moriou, C., Ermolenko, L., Guérineau, V., Retailleau, P., Thoison, O., Boury-Esnault, N., Pérez, T., Al-Mourabit, A.: Axiphenylalaninium and axityrosinium, modified amino acids from the Mediterranean marine sponge Axinella polypoides. J. Nat. Prod. 72, 1875–1878 (2009). https://doi.org/10.1021/np900204q

    Article  CAS  PubMed  Google Scholar 

  33. Yang, B., Huang, J., Lin, X., Zhang, Y., Tao, H., Liu, Y.: A new Diketopiperazine from the marine sponge Callyspongia species. Rec. Nat. Prod. 10, 117–121 (2016)

    CAS  Google Scholar 

  34. Horiuchi, K., Yonekawa, O., Iwahara, K., Kanno, T., Kurihara, T., Fujise, Y.: A hydrophilic tetrahydro-beta-carboline in human urine. J. Biochem. (Tokyo). 115, 362–366 (1994)

    Article  CAS  Google Scholar 

  35. Iida, T., Mukouzaka, Y., Nakamura, K., Yamaguchi, I., Kudo, T.: Isolation and characterization of Dibenzofuran-degrading Actinomycetes: analysis of multiple Extradiol Dioxygenase genes in Dibenzofuran-degrading Rhodococcus species. Biosci. Biotechnol. Biochem. 66, 1462–1472 (2002). https://doi.org/10.1271/bbb.66.1462

    Article  CAS  PubMed  Google Scholar 

  36. Manabe, S., Ito, Y.: Total synthesis of novel subclass of Glyco-amino acid structure motif: C2-α-D-C-Mannopyranosyl-L-tryptophan. J. Am. Chem. Soc. 121, 9754–9755 (1999). https://doi.org/10.1021/ja990926a

    Article  CAS  Google Scholar 

  37. Li, T., Deng, X., Wang, J., Chen, Y., He, L., Sun, Y., Song, C., Zhou, Z.: Biodegradation of nitrobenzene in a lysogeny broth medium by a novel halophilic bacterium bacillus licheniformis. Mar. Pollut. Bull. 89, 384–389 (2014). https://doi.org/10.1016/j.marpolbul.2014.09.028

    Article  CAS  PubMed  Google Scholar 

  38. Atlas, R.M.: Handbook of Microbiological Media. CRC Press, Boca Raton, Florida, Fourth Edition (2010)

  39. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., Madden, T.L.: NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–W9 (2008). https://doi.org/10.1093/nar/gkn201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R.: Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007). https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., Tiedje, J.M.: The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009). https://doi.org/10.1093/nar/gkn879

    Article  CAS  PubMed  Google Scholar 

  43. Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., Tiedje, J.M.: Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014). https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  44. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R.: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108(Suppl 1), 4516–4522 (2011). https://doi.org/10.1073/pnas.1000080107

    Article  CAS  PubMed  Google Scholar 

  45. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J.A., Smith, G., Knight, R.: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012). https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A.: Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinforma. Oxf. Engl. 28, 1647–1649 (2012). https://doi.org/10.1093/bioinformatics/bts199

    Article  Google Scholar 

  47. Aldrich, J.: R.A. Fisher and the making of maximum likelihood 1912-1922. Stat. Sci. 12, 162–176 (1997). https://doi.org/10.1214/ss/1030037906

    Article  Google Scholar 

  48. Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016). https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  49. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39, 783–791 (1985). https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  50. Berg, H.C.: The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003). https://doi.org/10.1146/annurev.biochem.72.121801.161737

    Article  CAS  PubMed  Google Scholar 

  51. Kurisu, F., Ogura, M., Saitoh, S., Yamazoe, A., Yagi, O.: Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. J. Biosci. Bioeng. 109, 576–582 (2010). https://doi.org/10.1016/j.jbiosc.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  52. Chao, Y., Kurisu, F., Saitoh, S.: Degradation of 17β-estradiol by Sphingomonas sp. strain D12 isolated from soil. J. Environ. Biotechnol. 3, 89–94 (2004)

    Google Scholar 

  53. Kertesz, M.A., Kawasaki, A.: Hydrocarbon-degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis. In: Timmis, K.N. (ed.) Handbook of Hydrocarbon and Lipid Microbiology, pp. 1693–1705. Springer, Berlin Heidelberg (2010)

    Chapter  Google Scholar 

  54. Vanbroekhoven, K., Ryngaert, A., Bastiaens, L., Wattiau, P., Vancanneyt, M., Swings, J., De Mot, R., Springael, D.: Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ. Microbiol. 6, 1123–1136 (2004). https://doi.org/10.1111/j.1462-2920.2004.00654.x

    Article  CAS  PubMed  Google Scholar 

  55. Wittich, R.-M., Busse, H.-J., Kämpfer, P., Tiirola, M., Wieser, M., Macedo, A.J., Abraham, W.-R.: Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int. J. Syst. Evol. Microbiol. 57, 306–310 (2007). https://doi.org/10.1099/ijs.0.64433-0

    Article  CAS  PubMed  Google Scholar 

  56. Vaz-Moreira, I., Nunes, O.C., Manaia, C.M.: Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl. Environ. Microbiol. 77, 5697–5706 (2011). https://doi.org/10.1128/AEM.00579-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Narciso-da-Rocha, C., Vaz-Moreira, I., Manaia, C.M.: Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. Sci. Total Environ. 466–467, 127–135 (2014). https://doi.org/10.1016/j.scitotenv.2013.06.109

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Minoru Yoshida (Chemical Genetics Laboratory and Center for Sustainable Resource Science, RIKEN) for his generous guidance and discussions concerning this project. We also wish to thank Dr. Futoshi Kurisu (Research Center for Water Environment Technology, The University of Tokyo) for helpful discussions, and Dr. Naoshi Dohmae (Biomolecular Characterization Unit, RIKEN) and Dr. Yoshiki Yamaguchi (Structural Glycobiology Team, RIKEN) for their generous help on this project. We also thank the members of the Glycometabolome Team, RIKEN for fruitful discussions. TJH was an International Program Associate (IPA) and financially supported by RIKEN.

Funding

This study was funded by management expenses grant from RIKEN and Saitama University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, T.J., Manabe, S., Ito, Y. et al. Enrichment and characterization of a bacterial mixture capable of utilizing C-mannosyl tryptophan as a carbon source. Glycoconj J 35, 165–176 (2018). https://doi.org/10.1007/s10719-017-9807-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-017-9807-2

Keywords

Navigation