Skip to main content

Advertisement

Log in

Characterization of the cell surface glycolipid from Spirochaeta aurantia

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Spirochaeta aurantia is a free-living saprophytic spirochete that grows easily in simple laboratory media, and thus can be used as a model for the investigation of surface carbohydrate structures in spirochetae, which are normally not available in sufficient amounts. Freeze-substitution electron microscopy indicated the presence of a capsule-like material projecting from the surface of S. aurantia. Extraction of cells gave two major glycolipids, the one with a higher molecular mass glycolipid was designated large glycolipid A (LGLA). LGLA contained small amount of branched and unsaturated O-linked fatty acids, l-rhamnose, l-fucose, d-xylose, d-mannose, d-glucosamine, d-glycero-d-gluco-heptose (DDglcHep), d-glycero-d-manno-heptose (DDHep), and a novel branched tetradeoxydecose monosaccharide, which we proposed to call aurantose (Aur). The carbohydrate structure of LGLA was extremely complex and consisted of the repeating units built of 11 monosaccharides, arrangement of nine of them was determined as:

$$\matrix {{\quad \quad \quad \quad \quad {\text{ - [ - 3 - }}\beta {\text{ - DDglcHep - }}3{\text{ - }}\beta {\text{ - D - GlcNAc - 2 - }}\beta {\text{ - D - Man - ] - }}}} \\ {{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad |}} \\ {{\alpha {\text{ - Aur - 3 - }}\beta {\text{ - L - Rha - 4 - }}\beta {\text{ - D - Xyl - 4 - }}\alpha {\text{ - L - Fuc - 3 - }}\beta {\text{ - DDHep - 4}}}} \\ {{\quad \quad \quad \quad \quad \quad \quad \quad \quad |}} \\ {{\alpha {\text{ - L - Rha - 3}}}} \ $$

which wasdeduced from the NMR and chemical data on the LGLA and its fragments, obtained by various degradations. Tentative position of two remaining sugars is proposed. LGLA was negative for gelation of Limulus amebocyte lysate, did not contain lipid A, and was unable to activate any known Toll-like receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Canale-Parola, E.: Spirochaeta. In: Krieg, N.R. (ed.) Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, MD (1984)

    Google Scholar 

  2. Raetz, C.R., Whitfield, C.: Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002). doi:10.1146/annurev.biochem.71.110601.135414

    Article  CAS  PubMed  Google Scholar 

  3. Triantafilou, M., Lepper, P.M., Briault, C.D., Ahmed, M.A., Dmochowski, J.M., Schumann, C., Triantafilou, K.: Chemokine receptor 4 (CXCR4) is part of the lipopolysaccharide “sensing apparatus”. Eur. J. Immunol. 38, 192–203 (2008). doi:10.1002/eji.200636821

    Article  CAS  PubMed  Google Scholar 

  4. Triantafilou, M., Triantafilou, K.: The dynamics of LPS recognition: complex orchestration of multiple receptors. J. Endotoxin Res. 11, 5–11 (2005)

    CAS  PubMed  Google Scholar 

  5. Que-Gewirth, N.L., Ribeiro, A.A., Kalb, S.R., Cotter, R.J., Bulach, D.M., Adler, B., Girons, I.S., Werts, C., Raetz, C.R.: A methylated phosphate group and four amide-linked acyl chains in Leptospira interrogans lipid A. The membrane anchor of an unusual lipopolysaccharide that activates TLR2. J. Biol. Chem. 279, 25420–25429 (2004). doi:10.1074/jbc.M400598200

    Article  CAS  PubMed  Google Scholar 

  6. Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Lathigra, R., White, O., Ketchum, K.A., Dodson, R., Hickey, E.K., Gwinn, M., Dougherty, B., Tomb, J.F., Fleischmann, R.D., Richardson, D., Peterson, J., Kerlavage, A.R., Quackenbush, J., Salzberg, S., Hanson, M., van Vugt, R., Palmer, N., Adams, M.D., Gocayne, J., Venter, J.C.: Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 (1997). doi:10.1038/37551

    Article  CAS  PubMed  Google Scholar 

  7. Ben-Menachem, G., Kubler-Kielb, J., Coxon, B., Yergey, A., Schneerson, R.: A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc. Natl. Acad. Sci. U. S. A. 100, 7913–7918 (2003). doi:10.1073/pnas.1232451100

    Article  CAS  PubMed  Google Scholar 

  8. Schroder, N.W., Schombel, U., Heine, H., Gobel, U.B., Zahringer, U., Schumann, R.R.: Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J. Biol. Chem. 278, 33645–33653 (2003). doi:10.1074/jbc.M305799200

    Article  PubMed  Google Scholar 

  9. Schultz, C.P., Wolf, V., Lange, R., Mertens, E., Wecket, J., Naumann, D., Zahringer, U.: Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola: functioning permeation barrier without lipopolysaccharides. J. Biol. Chem. 273, 15661–15666 (1998). doi:10.1074/jbc.273.25.15661

    Article  CAS  PubMed  Google Scholar 

  10. Schroder, N.W., Opitz, B., Lamping, N., Michelsen, K.S., Zahringer, U., Gobel, U.B., Schumann, R.R.: Involvement of lipopolysaccharide binding protein, CD14, and Toll-like receptors in the initiation of innate immune responses by Treponema glycolipids. J. Immunol. 165, 2683–2693 (2000)

    CAS  PubMed  Google Scholar 

  11. Kesavalu, L., Falk, C.W., Davis, K.J., Steffen, M.J., Xu, X., Holt, S.C., Ebersole, J.L.: Biological characterization of lipopolysaccharide from Treponema pectinovorum. Infect. Immun. 70, 211–217 (2002). doi:10.1128/IAI.70.1.211-217.2002

    Article  CAS  PubMed  Google Scholar 

  12. Breznak, J.A., Canale-Parola, E.: Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. Arch. Microbiol. 105, 1–12 (1975). doi:10.1007/BF00447104

    Article  CAS  PubMed  Google Scholar 

  13. Lilburn, T.G., Kim, K.S., Ostrom, N.E., Byzek, K.R., Leadbetter, J.R., Breznak, J.A.: Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495–2498 (2001). doi:10.1126/science.1060281

    Article  CAS  PubMed  Google Scholar 

  14. Vinogradov, E., Paul, C.J., Li, J., Zhou, Y., Lyle, E.A., Tapping, R.I., Kropinski, A.M., Perry, M.B.: The structure and biological characteristics of the Spirochaeta aurantia outer membrane glycolipid LGLB. Eur. J. Biochem. 271, 4685–4695 (2004). doi:10.1111/j.1432-1033.2004.04433.x

    Article  CAS  PubMed  Google Scholar 

  15. Darveau, R.P., Hancock, R.E.: Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J. Bacteriol. 155, 831–838 (1983)

    CAS  PubMed  Google Scholar 

  16. Kropinski, A.M., Ghiorse, W.C., Greenberg, E.P.: The intracellular polyglucose storage granules of Spirochaeta aurantia. Arch. Microbiol. 184, 289–295 (1988). doi:10.1007/BF00407794

    Article  Google Scholar 

  17. Feingold, D.S., Youngner, J.S., Chen, J.: Interferon production in mice by cell wall mutants of Salmonella typhimurium. III. Role of lipid moiety of bacterial lipopolysaccharide in Interferon production in animals. Ann.N.Y. Acad. Sci. 173, 249–254 (1970). doi:10.1111/j.1749-6632.1970.tb53415.x

    Article  CAS  Google Scholar 

  18. Bock, K., Pedersen, C.: Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. Adv. Carbohydr. Chem. Biochem. 41, 27–66 (1983). doi:10.1016/S0065-2318(08)60055-4

    Article  CAS  Google Scholar 

  19. Lipkind, G.M., Shashkov, A.S., Knirel, Y.A., Vinogradov, E.V., Kochetkov, N.K.: A computer-assisted structural analysis of regular polysaccharides on the basis of 13C-n.m.r. data. Carbohydr. Res. 175, 59–75 (1988). doi:10.1016/0008-6215(88)80156-3

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto, M., Asai, Y., Jinno, T., Adachi, S., Kusumoto, S., Ogawa, T.: Structural elucidation of polysaccharide part of glycoconjugate from Treponema medium ATCC 700293. Eur. J. Biochem. 270, 2671–2679 (2003). doi:10.1046/j.1432-1033.2003.03644.x

    Article  CAS  PubMed  Google Scholar 

  21. Asai, Y., Ohyama, Y., Taiji, Y., Makimura, Y., Tamai, R., Hashimoto, M., Ogawa, T.: Treponema medium glycoconjugate inhibits activation of human gingival fibroblasts stimulated with phenol–water extracts of periodontopathic bacteria. J. Dent. Res. 84, 456–461 (2005). doi:10.1177/154405910508400511

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, MA, USA (1989)

    Google Scholar 

  23. Lesse, A.J., Campagnari, A.A., Bittner, W.E., Apicella, M.A.: Increased resolution of lipopolysaccharides and liopoligosaccharides utilizing tricine–sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Immunol. Methods 126, 107–109 (1990). doi:10.1016/0022-1759(90)90018-Q

    Article  Google Scholar 

  24. Tsai, C.M., Frasch, C.E.: A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 119, 115–119 (1982). doi:10.1016/0003-2697(82)90673-X

    Article  CAS  PubMed  Google Scholar 

  25. Dmitriev, B.A., Knirel, Y.A., Kochetkov, N.K.: Selective cleavage of glycosidic linkages: Studies with the model compound benzyl 2-acetamido-2-deoxy-6-O-a-d-mannopyranosyl-a-d-glucopyranoside. Carbohydr. Res. 30, 45–50 (1973). doi:10.1016/S0008-6215(00)82171-0

    Article  CAS  Google Scholar 

  26. Tapping, R.I., Akashi, S., Miyake, K., Godowski, P.J., Tobias, P.S.: Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165, 5780–5787 (2000)

    CAS  PubMed  Google Scholar 

  27. Paul, T.R., Beveridge, T.J.: Ultrastructure of mycobacterial surfaces by freeze-substitution. Zentralbl. Bakteriol. 279, 450–457 (1993)

    CAS  PubMed  Google Scholar 

  28. Graham, L.L., Harris, R., Villiger, W., Beveridge, T.J.: Freeze-substitution of Gram-negative eubacteria: general cell morphology and envelope profiles. J. Bacteriol. 173, 1623–1633 (1991)

    CAS  PubMed  Google Scholar 

  29. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  30. Johnson, A.R.: Improved method of hexosamine determination. Anal. Biochem. 44, 628–635 (1971). doi:10.1016/0003-2697(71)90252-1

    Article  CAS  PubMed  Google Scholar 

  31. Karkhanis, Y.D., Zeltner, J.Y., Jackson, J.J., Carlo, D.J.: A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal. Biochem. 85, 595–601 (1978). doi:10.1016/0003-2697(78)90260-9

    Article  CAS  PubMed  Google Scholar 

  32. Holst, O.: In: Holst, O. (ed.) Methods in Molecular Biology, Bacterial Toxins: Methods and Protocols, pp. 345–353. Humana, Totowa, NJ (2000)

  33. Leontein, K., Lindberg, B., Loenngren, J.: Assignment of absolute configuration of sugars by g.l.c. of their acetylated glycosides formed from chiral alcohols. Carbohydr. Res. 62, 359–362 (1978). doi:10.1016/S0008-6215(00)80882-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery grant to A.M.K. Authors are very indebted to Dr. Cristina De Castro, Università di Napoli “Federico II", for the identification of paratose and to Ms. Diane Moyles at the University of Guelph for freeze substitution electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Vinogradov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, C.J., Lyle, E.A., Beveridge, T.J. et al. Characterization of the cell surface glycolipid from Spirochaeta aurantia . Glycoconj J 26, 1097–1108 (2009). https://doi.org/10.1007/s10719-009-9230-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9230-4

Keywords

Navigation