Skip to main content
Log in

Torsion/nonmetricity duality in f(R) gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Torsion and nonmetricity are inherent ingredients in modifications of Eintein’s gravity that are based on affine spacetime geometries. In the context of pure f(R) gravity we discuss here, in some detail, the relatively unnoticed duality between torsion and nonmetricity. Our novel suggestion is that torsion and nonmetricity are physically equivalent properties of spacetimes having nontrivial Weyl structure. Our main example is \(R^2\) gravity where torsion and nonmetricity are related by projective transformations corresponding to a redefinition of the affine parameters for autoparallels, As a simple consequence we show that both torsion and nonmetricity can act as geometric sources of accelerated expansion in a spatially homogenous cosmological model within \(R^2\) gravity. We briefly discuss possible implications of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For recent discussions regarding the holographic applications of torsion to condensed matter systems see also [3,4,5,6]. Analogous results for nonmetricity have not yet appeared in the literature.

  2. A summary of our notations is presented in the Appendix.

  3. Nonmetricity of the form given in (10) is called Weyl nonmetricity.

  4. A similar observation has been recently made in [18], in the context of the so-called symmetric teleparallel general relativity (STERG).

  5. This is derived using the affine connection decomposition (A.14) and substituting into the Ricci tensor definition (A.4).

  6. The index inside horizontal bars is left out from the (anti)-symmetrization. The latter are defined as \(A_{[\mu ,\nu ]}=(A_{\mu \nu }-A_{\nu \mu })/2\) and \(A_{\{\mu ,\nu \}}=(A_{\mu \nu }+A_{\nu \mu })/2\).

References

  1. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hehl, F.W., Obukhov, Y.N.: Elie Cartan’s torsion in geometry and in field theory, an essay. Ann. Fond. Broglie 32, 157–194 (2007)

    MATH  Google Scholar 

  3. Leigh, R.G., Hoang, N.N., Petkou, A.C.: Torsion and the gravity dual of parity symmetry breaking in AdS(4) / CFT(3) holography. JHEP 03, 033 (2009)

    Article  ADS  Google Scholar 

  4. Hughes, T.L., Leigh, R.G., Fradkin, E.: Torsional response and dissipationless viscosity in topological insulators. Phys. Rev. Lett. 107, 075502 (2011)

    Article  ADS  Google Scholar 

  5. Hughes, T.L., Leigh, R.G., Parrikar, O.: Torsional anomalies, Hall viscosity, and bulk-boundary correspondence in topological states. Phys. Rev. D 88(2), 025040 (2013)

    Article  ADS  Google Scholar 

  6. Parrikar, O., Hughes, T.L., Leigh, R.G.: Torsion, parity-odd response and anomalies in topological states. Phys. Rev. D 90(10), 105004 (2014)

    Article  ADS  Google Scholar 

  7. Shapiro, I.L.: Physical aspects of the space-time torsion. Phys. Rep. 357, 113 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sotiriou, T.P., Liberati, S.: Metric-affine \(f(R)\) theories of gravity. Ann. Phys. 322, 935–966 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Sotiriou, T.P., Faraoni, V.: \(f(R)\) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

    Article  ADS  Google Scholar 

  10. Olmo, G.J.: Palatini approach to modified gravity: \(f(R)\) theories and beyond. Int. J. Mod. Phys. D 20, 413–462 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Heisenberg, L.: A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rept. 796, 1–113 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Sotiriou, T.P.: \(f(R)\) gravity, torsion and non-metricity. Class. Quantum Gravity 26, 152001 (2009)

    Article  ADS  Google Scholar 

  13. Ferraris, M., Francaviglia, M., Volovich, I.: The Universality of vacuum Einstein equations with cosmological constant. Class. Quantum Gravity 11, 1505–1517 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  14. Julia, B., Silva, S.: Currents and superpotentials in classical gauge invariant theories: 1. Local results with applications to perfect fluids and general relativity. Class. Quantum Gravity 15, 2173–2215 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dadhich, N., Pons, J.M.: On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations of general relativity for an arbitrary connection. Gen. Relativ. Gravit. 44, 2337–2352 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bernal, A.N., Janssen, B., Jimenez-Cano, A., Orejuela, J.A., Sanchez, M., Sanchez-Moreno, P.: On the (non-)uniqueness of the Levi-Civita solution in the Einstein–Hilbert–Palatini formalism. Phys. Lett. B 768, 280–287 (2017)

    Article  ADS  Google Scholar 

  17. Capozziello, S., Cianci, R., Stornaiolo, C., Vignolo, S.: \(f(R)\) cosmology with torsion. Phys. Scr. 78, 065010 (2008)

    Article  ADS  Google Scholar 

  18. Järv, L., Rünkla, M., Saal, M., Vilson, O.: Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D 97(12), 124025 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Iosifidis, D., Tsagas, C.G., Petkou, A.C.: The Raychaudhuri equation in spacetimes with torsion and non-metricity. Phys. Rev. D. 98(10), 104037 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kranas, D., Tsagas, C.G., Barrow, J.D., Iosifidis, D.: Friedmann-like universes with torsion. Eur. Phys. J. C. 79(4), 341 (2019)

    ADS  Google Scholar 

  21. Jimenez, J.B., Koivisto, T.S.: Spacetimes with vector distortion: inflation from generalised Weyl geometry. Phys. Lett. B756, 400–404 (2016)

    Article  ADS  Google Scholar 

  22. Afonso, V.I., Bejarano, C., Jimenez, J.B., Olmo, G.J., Orazi, E.: The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields. Class. Quantum Gravity 34(23), 235003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Barceló, C., Carballo-Rubio, R., Garay, L.J.: Weyl relativity: a novel approach to Weyl’s ideas. JCAP 1706(06), 014 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Jiménez, J.B., Heisenberg, L., Koivisto, T.: Coincident general relativity. Phys. Rev. D 98(4), 044048 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Jiménez, J.B., Heisenberg, L., Koivisto, T.S.: Teleparallel palatini theories. JCAP 1808(08), 039 (2018)

    Article  MathSciNet  Google Scholar 

  26. de Berredo-Peixoto, G.: Non-metricities, torsion and fermions (2018)

  27. Iosifidis, D.: Aspects of Modified Gravity with Torsion and Nonmetricity. Ph.D. Thesis, Aristotle University of Thessaloniki (2018). arXiv:1902.09643

  28. Delhom-Latorre, A., Olmo, G.J., Ronco, M.: Observable traces of non-metricity: new constraints on metric-affine gravity. Phys. Lett. B 780, 294–299 (2018)

    Article  ADS  Google Scholar 

  29. Lucat, S., Prokopec, T.: The role of conformal symmetry in gravity and the standard model. Class. Quantum Gravity 33(24), 245002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Leigh, R.G., Petkou, A.C.: \(SL(2,{\mathbb{Z}})\) action on three-dimensional CFTs and holography. JHEP 12, 020 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Leigh, R.G., Petkou, A.C.: Gravitational duality transformations on (A)dS(4). JHEP 11, 079 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Koivisto and D. Roest for some useful discussions and correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios C. Petkou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Denoting with \(\Gamma ^{\rho }_{\;\beta \mu }\) the affine connection, covariant derivatives (of e.g. a mixed tensor) are defined as

$$\begin{aligned} \nabla _{\mu }T^{\alpha }_{\,\,\beta }=\partial _{\mu }T^{\alpha }_{\,\,\beta }+\Gamma ^{\alpha }_{\,\,\rho \mu }T^{\rho }_{\,\,\beta }-\Gamma ^{\rho }_{\,\,\beta \mu }T^{\alpha }_{\,\,\rho } \end{aligned}$$
(A.1)

Notice the position of the various indices in (A.1). The Riemann \(R^{\mu }_{\,\,\nu \alpha \beta }\) and torsion tensors \(S_{\alpha \beta }^{\,\,\nu }\) are defined via the commutator of two covariant derivatives acting on a vector \(u^{\mu }\) asFootnote 6

$$\begin{aligned}&[\nabla _{\alpha },\nabla _{\beta }]u^{\mu }=2\nabla _{[\alpha } \nabla _{\beta ]}u^{\mu }=R^{\mu }_{\,\,\nu \alpha \beta } u^{\nu }+2 S_{\alpha \beta }^{\,\,\nu }\nabla _{\nu }u^{\mu } \end{aligned}$$
(A.2)
$$\begin{aligned}&R^{\mu }_{\,\,\nu \alpha \beta }:=2\partial _{[\alpha }\Gamma ^{\mu }_{\,\,|\nu |\beta ]}+2\Gamma ^{\mu }_{\,\,\rho [\alpha }\Gamma ^{\rho }_{\,\,|\nu |\beta ]},\quad S_{\alpha \beta }^{\,\,\nu }:=\Gamma ^{\nu }_{\,\,[\alpha \beta ]} \end{aligned}$$
(A.3)

With a generic connection the Riemann tensor is antisymmetric in its last two indices. So, we can generically define the independent contractions giving the Ricci tensor

$$\begin{aligned} R_{\nu \beta }:= R^{\mu }_{\,\,\nu \mu \beta } = 2\partial _{[\mu }\Gamma ^{\mu }_{\,\,|\nu |\beta ]}+2\Gamma ^{\mu }_{\,\,\rho [\mu }\Gamma ^{\rho }_{\,\,|\nu |\beta ]} \end{aligned}$$
(A.4)

which, is not symmetric in \(\nu ,\beta \) in general, and the homothetic curvature tensor

$$\begin{aligned} \hat{R}_{\alpha \beta }:=R^{\mu }_{\,\,\mu \alpha \beta }=2\partial _{[\alpha }\Gamma ^{\mu }_{\,\,|\mu |\beta ]}=\partial _{\alpha }\Gamma ^{\mu }_{\,\,\mu \beta }-\partial _{\beta }\Gamma ^{\mu }_{\,\,\mu \alpha } \end{aligned}$$
(A.5)

The above discussion did not require a metric. If a symmetric metric \(g_{\mu \nu }\) is present we can also define a third independent contraction of the Riemann tensor as

$$\begin{aligned} \check{R}^{\mu }_{\;\;\beta } =g^{\nu \alpha }R^{\mu }_{\,\,\nu \alpha \beta }:=2 g^{\nu \alpha }\partial _{[\alpha }\Gamma ^{\mu }_{\,\,|\nu |\beta ]}+2 g^{\nu \alpha } \Gamma ^{\mu }_{\,\,\rho [\alpha }\Gamma ^{\rho }_{\,\,|\nu |\beta ]} \end{aligned}$$
(A.6)

Moreover, the Ricci scalar is still uniquely defined since

$$\begin{aligned} \check{R}=\check{R}^{\alpha }_{\,\,\alpha }=R^{\alpha }_{\,\,\beta \mu \alpha }g^{\beta \mu }=-R^{\alpha }_{\,\,\beta \alpha \mu }g^{\beta \mu }=-R_{\beta \mu }g^{\beta \nu }=-R \end{aligned}$$
(A.7)

There are two independent contractions of the torsion tensor giving the torsion vector \(S_\mu \) and the torsion pseudovector \(\tilde{S}_\mu \) respectively as

$$\begin{aligned} S_{\mu } \equiv S_{\mu \lambda }^{\lambda },\quad \tilde{S}^{\mu } \equiv \epsilon ^{\mu \nu \rho \sigma }S_{\nu \rho \sigma } \end{aligned}$$
(A.8)

The non-metricity tensor is defined as

$$\begin{aligned} Q_{\alpha \mu \nu } :=-\nabla _{\alpha }g_{\mu \nu } \end{aligned}$$
(A.9)

It depends both on the metric tensor and the connection i.e. using the definition of the covariant derivative we have

$$\begin{aligned} Q_{\alpha \mu \nu } :=-\nabla _{\alpha }g_{\mu \nu } =-\partial _{\alpha }g_{\mu \nu }+\Gamma ^{\rho }_{\mu \alpha }g_{\rho \nu }+\Gamma ^{\rho }_{\nu \alpha }g_{\mu \rho } \end{aligned}$$
(A.10)

from which, the dependence on \(\Gamma ^{\lambda }_{\mu \nu }\) and \(g_{\mu \nu }\) is apparent. Raising the last two indices we obtain

$$\begin{aligned} Q_{\rho }^{,\alpha \beta }=\nabla _{\rho }g^{\alpha \beta } \end{aligned}$$
(A.11)

From the non-metricity tensor we can construct two independent vectors. The Weyl vector is defined as

$$\begin{aligned} Q_{\alpha }:= g^{\mu \nu }Q_{\alpha \mu \nu }=Q_{\alpha \,\mu }^{\mu } \end{aligned}$$
(A.12)

A second nonmetricity vector vector can also be defined and it is given by

$$\begin{aligned} \tilde{Q}_{\nu }:= g^{\mu \alpha }Q_{\alpha \mu \nu }=Q^{\mu }_{\,\,\mu \nu }=-g^{\mu \alpha }\nabla _{\alpha }g_{\mu \nu } \end{aligned}$$
(A.13)

Finally, using the results above one can decompose the general affine connection as

$$\begin{aligned} \Gamma ^{\lambda }_{\,\,\mu \nu }=\tilde{\Gamma }^{\lambda }_{\,\,\mu \nu }+N^\lambda _{\,\,\mu \nu }, \end{aligned}$$
(A.14)

where the distortion tensor \(N^\lambda _{\,\,\mu \nu }\) is given by

$$\begin{aligned} N^\lambda _{\,\,\mu \nu }&=\underbrace{\frac{1}{2}g^{\alpha \lambda }(Q_{\mu \nu \alpha }+Q_{\nu \alpha \mu }-Q_{\alpha \mu \nu })}_\text {deflection} -\underbrace{g^{\alpha \lambda }(S_{\alpha \mu \nu }+S_{\alpha \nu \mu }-S_{\mu \nu \alpha })}_\text {contorsion} \end{aligned}$$
(A.15)
$$\begin{aligned}&=\frac{1}{2}g^{\alpha \lambda }\left[ (Q_{\mu \nu \alpha }+2S_{\mu \nu \alpha })+(Q_{\nu \alpha \mu }+2S_{\nu \alpha \mu })-(Q_{\alpha \mu \nu }+2S_{\alpha \mu \nu })\right] \end{aligned}$$
(A.16)

where the Levi-Civita connection is given by the usual Christoffel symbols

$$\begin{aligned} \tilde{\Gamma }^{\lambda }_{\,\,\mu \nu }:=\frac{1}{2}g^{\alpha \lambda }(\partial _{\mu }g_{\nu \alpha }+\partial _{\nu }g_{\alpha \mu }-\partial _{\alpha }g_{\mu \nu }) \end{aligned}$$
(A.17)

Some useful identities are

$$\begin{aligned} Q_{\nu \alpha \mu }=N_{(\alpha \mu )\nu },\quad S_{\mu \nu \alpha }=N_{\alpha [\mu \nu ]},\quad N_{[\alpha \mu \nu ]}=S_{[\mu \nu \alpha ]}=S_{[\alpha \mu \nu ]} \end{aligned}$$
(A.18)

where the latter refers to the totally antisymmetric part of the distortion. as can be easily checked. Notice also only the symmetric part \(N^{\lambda }_{\,\,(\mu \nu )}\) contributes to the autoparallel equation \(u^\nu \nabla _\nu u^\mu =0\). This is equal to

$$\begin{aligned} N^{\lambda }_{\,\,(\mu \nu )}=g^{\alpha \lambda }\left( Q_{(\mu \nu )\alpha }-\frac{1}{2}Q_{\alpha \mu \nu }\right) -2g^{\alpha \lambda } S_{\alpha (\mu \nu )}. \end{aligned}$$
(A.19)

For vector torsion and nonmetricity as in (10) this coincides with (9). Notice that a completely antisymmetric torsion \((S_{\alpha \mu \nu }=S_{[\alpha \mu \nu ]})\) has no effect on autoparallels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iosifidis, D., Petkou, A.C. & Tsagas, C.G. Torsion/nonmetricity duality in f(R) gravity. Gen Relativ Gravit 51, 66 (2019). https://doi.org/10.1007/s10714-019-2539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2539-9

Keywords

Navigation