Skip to main content
Log in

Is the universe homogeneous and isotropic in the time when quark-gluon plasma exists?

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, quark and strange quark matter which exist in the first seconds of the early Universe have been studied in the context of general relativity to be able to obtain space–time geometry of first seconds of the early Universe. For this purpose, Einstein’s field equations for quark and strange quark matter in the non static spherically symmetric space–time have been solved by using experimental result that anisotropy parameter of quark matter is very small. We have concluded from obtained solutions that the space–time structure of first seconds of the Early Universe is homogeneous and isotropic. Also we have concluded that the color interactions of the quarks may be origin of primordial magnetic field in the early universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Gouveia Dal Pino, E.M.: Cosmic magnetic fields. In: AIP Conference Proceedings, vol. 875, pp. 289–295. American Institute of Physics (2006)

  2. Beck, R.: In: de Gouveia Dal Pino, E.M., Lugones, G., Lazarian, A. (eds.) Magnetic Fields in the Universe: from Laboratory and Stars to Primordial Structures. AIP Conference Proceedings, vol. 784, pp. 343–353. American Institute of Physics (2005)

  3. Grasso D., Rubinstein H.R.: Magnetic fields in the early universe. Phys. Rep. 348, 163–266 (2001)

    Article  ADS  Google Scholar 

  4. Rees M.J.: Origin of cosmic magnetic fields. Astron. Nachr. 327, 395–398 (2006)

    Article  ADS  MATH  Google Scholar 

  5. Shaposhnikov, M.: Primordial magnetic fields. In: AIP Conference Proceedings, vol. 784, pp. 423–433. American Institute of Physics (2005)

  6. Witten E.: Cosmic separation of phases. Phys. Rev. D 30(2), 272–285 (1984)

    Article  ADS  Google Scholar 

  7. Itoh N.: Prog. Theo. Phys. 44, 291 (1970)

    Article  ADS  Google Scholar 

  8. Bodmer A.R: Collapsed nuclei. Phys. Rev. D 4(6), 1601–1606 (1971)

    Article  ADS  Google Scholar 

  9. Li X.-D., Dai Z.-G., Wang Z.-R.: Astron. Astrophys. 303, L1 (1995)

    ADS  Google Scholar 

  10. Bombaci I.: Phys. Rev. C 55, 1587 (1997)

    Article  ADS  Google Scholar 

  11. Dey M., Bombaci I., Dey J., Ray S., Samanta B.C.: Phys. Lett. B 438, 123 (1998)

    Article  ADS  Google Scholar 

  12. Dey M., Bombaci I., Dey J., Ray S., Samanta B.C.: Addendum. B 447, 352 (1999)

    Google Scholar 

  13. Dey, M., Bombaci, I., Dey, J., Ray, S., Samanta, B.C.: Erratum: B 467, 303 (1999)

  14. Dey M., Bombaci I., Dey J., Ray S., Samanta B.C.: Indian. J. Phys. 73B, 377 (1999)

    ADS  Google Scholar 

  15. Li X.D., Bombaci I., Dey M., Dey J., van den Heeuvel E.P.J.: Phys. Rev. Lett. 83, 3776 (1999)

    Article  ADS  Google Scholar 

  16. Li X.D., Ray S., Dey J., Dey M., Bombaci I.: Astrophys. J. 527, L51 (1999)

    Article  ADS  Google Scholar 

  17. Xu R.X., Qiao G.J., Zhang B.: Astrophys. J. 522, L109 (1999)

    Article  ADS  Google Scholar 

  18. Xu R.X., Xu X.B., Wu X.J.: Chin. Phys. Lett. 18, 837 (2001) astro-ph/0101013

    Article  ADS  Google Scholar 

  19. Pons J.A., Walter F.M., Lattimer J.M., Prakash M., Neuhäuser R., Penghui A.: Astrophys. J. 564, 981 (2002)

    Article  ADS  Google Scholar 

  20. Sharma R., Karmakar S., Mukherjee S.: Maximum mass of a class of cold compact stars. Int. J. Mod. Phys. D 15(3), 405–418 (2006)

    Article  ADS  MATH  Google Scholar 

  21. Aktas C., Yilmaz İ: Space-time geometry of quark and strange quark matter. Chin. J. Astron. Astrophys. 7(6), 757–763 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. Alford M.G., Schmitt A.: Bulk viscosity in 2SC quark matter. J. Phys. G: Nucl. Part. Phys. 34, 67 (2007)

    Article  ADS  Google Scholar 

  23. Alford M.G., Braby M., Reddy S., Schaefer T.: Bulk viscosity due to Kaons in color-flavor-locked quark matter. Phys. Rev. C 75, 055209 (2007)

    Article  ADS  Google Scholar 

  24. Negreiros R.P., Weber F., Malheiro M., Usov V.: Electrically charged strange quark stars. Phys. Rev. D 80, 083006 (2009)

    Article  ADS  Google Scholar 

  25. Schaffner-Bielich J.: Strange quark matter in stars: a general overview. J. Phys. G: Nucl. Part. Phys. 31, S651 (2005)

    Article  ADS  Google Scholar 

  26. Schaffner-Bielich, J., Schramm, S., Stocker, H.: Strangeness in relativistic astrophysics, arXiv:0711.2639 (2007)

  27. Sad B.A., Shovkovy I.A., Rischke D.H.: Bulk viscosity of spin-one color superconductors with two quark flavors. Phys. Rev. D 75, 065016 (2007)

    Article  ADS  Google Scholar 

  28. Sad B.A., Shovkovy I.A., Rischke D.H.: Bulk viscosity of strange quark matter: Urca versus nonleptonic processes. Phys. Rev. D 75, 125004 (2007)

    Article  ADS  Google Scholar 

  29. Dong H., Su N., Wang Q.: Bulk viscosity in nuclear and quark matter. J. Phys. G: Nucl. Part. Phys. 34, S643 (2007)

    Article  ADS  Google Scholar 

  30. Yilmaz İ: String cloud and domain walls with quark matter in 5-D Kaluza Klein cosmological model. Gen. Relativ. Gravit. 38(09), 1397–1406 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Yavuz İ., Yilmaz I., Baysal H.: Strange quark matter attached to the string cloud in the spherical symmetric space–time admitting conformal motion. Int. J. Mod. Phys. D 14(08), 1365–1372 (2005)

    Article  ADS  MATH  Google Scholar 

  32. Mak M.K., Harko T.: Int. J. Mod. Phys. D 13, 149 (2004)

    Article  ADS  MATH  Google Scholar 

  33. http://www.bnl.gov/bnlweb/pubaf/pr

  34. Adams J., Aggarwal M.M., Ahammed Z., Amonett J., Anderson B.D., Arkhipkin D., Averichev G.S., Badyal S.K., Bai Y., Balewski J., Barannikova O. et al.: Experimental and theoretical challenges in the search for the quark-gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757(1–2), 102–183 (2005)

    Article  ADS  Google Scholar 

  35. Back B.B., Baker M.D., Ballintijn M., Barton D.S., Becker B., Betts R.R., Bickley A.A., Bindel R., Budzanowski A., Busza W., Carroll A., Chai Z., Decowski M.P., Garcia E. et al.: The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757(1–2), 28–101 (2005)

    Article  ADS  Google Scholar 

  36. Adcox K., Adler S.S., Afanasiev S., Aidala C., Ajitanand N.N., Akiba Y., Al-Jamel A., Alexander J., Amirikas R., Aoki K., Aphecetche L., Arai Y., Armendariz R. et al.: Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 757(1–2), 184–253 (2005)

    Article  ADS  Google Scholar 

  37. Shuryak E.: Why does the quark-gluon plasma at RHIC behave as a nearly ideal fluid?. Prog. Part. Nucl. Phys. 53(1), 273–303 (2004)

    Article  ADS  Google Scholar 

  38. Liao, J., Shuryak, E.: arXiv:0804.0255 (2008)

  39. Nayak, T.K.: arXiv:0804.1368 (2008)

  40. Natsume, M.: String theory implications on causal hydrodynamics. In: Progress of Theoretical Physics Supplement, No. 174, pp. 286–297 (2008)

  41. Barrow J.D., Maartens R., Tsagas C.G.: Cosmology With inhomogeneous magnetic fields. Phys. Rep. 449(6), 131–171 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  42. Joshi P.S.: Gravitational collapse: the story so far. Pramana 55(4), 529–544 (2000)

    Article  ADS  Google Scholar 

  43. Tsagas C.G., Barrow J.D.: A gauge-invariant analysis of magnetic fields in general-relativistic cosmology. Class. Quantum Gravity 14(9), 2539–2562 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Dey M., Bombaci I., Dey J., Ray S., Samanta B.C.: Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential. Phys. Lett. B 438(1), 123–128 (1998)

    Article  ADS  Google Scholar 

  45. Gondek-Rosinska, D., Haensel, P., Zdunik, J.L., Gourgoulhon, E.: Rapidly rotating strange stars, pulsar astronomy—2000 and beyond. ASP Conference Series, vol. 202, p. 661 (2000)

  46. Sharma R., Maharaj S.D.: A class of relativistic stars with a linear equation of state. Mon. Notices. R. Astron. Soc. 375(4), 1265–1268 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Aktaş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aktaş, C., Yılmaz, İ. Is the universe homogeneous and isotropic in the time when quark-gluon plasma exists?. Gen Relativ Gravit 43, 1577–1591 (2011). https://doi.org/10.1007/s10714-011-1154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1154-1

Keywords

Navigation