Skip to main content
Log in

On the Normal-Incidence Reflection Coefficient in Porous Media

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We compare the exact normal-incidence PP reflection coefficient [Geertsma–Smit expression] to approximations reported by several authors, based on open-pore boundary conditions at a plane interface between two porous media. The approximations correspond to low frequencies. Two of them are derived from the low-frequency Biot theory below the Biot characteristic frequency, but the results show significant differences much below the Biot frequency. Then, we extend the Geertsma–Smit equations by including the high-frequency viscodynamic operator (i.e., the full-frequency range Biot theory), showing that there are additional substantial differences at the high-frequency range. Use of this latter expression is required to honor the physics in the whole frequency range. We further generalize the Geertsma–Smit equations to the case of general boundary conditions other than the open-pore interface. At the seismic band, it is shown that the lossless (elastic) expression based on the Gassmann P-wave impedance is the reflection coefficient to use for practical applications. It is inferred that interpretations based on the frequency dependency of these approximations can be misleading, since this dependency does not provide a suitable description of the physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allard JF (1993) Propagation of sound in porous media, modelling sound absorbing materials. Elsevier Sci. Pub. Ltd., London

    Book  Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28:168–178

  • Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High-frequency range. J Acoust Soc Am 28:179–191

  • Biot MA (1962) Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 34:1254–1264

    Article  Google Scholar 

  • Bourbie T, Coussy O, Zinzner B (1987) Acoustics of porous media. Gulf Publishing Company, Houston

    Google Scholar 

  • Carcione JM (1998) Viscoelastic effective rheologies for modeling wave propagation in porous media. Geophys. Prosp. 46:249–270

    Article  Google Scholar 

  • Carcione JM (2014) Wave fields in real media. Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media, 3rd edn, revised and extended, Elsevier Science

  • Carcione JM, Campanella O, Santos JE (2007) A poroelastic model for wave propagation in partially frozen orange juice. J Food Eng 80:11–17

    Article  Google Scholar 

  • Carcione JM, Picotti S (2006) P-wave seismic attenuation by slow-wave diffusion. Effects of inhomogeneous rock properties. Geophysics 71:O1–O8

    Article  Google Scholar 

  • Carcione JM, Quiroga-Goode G (1995) Some aspects of the physics and numerical modeling of Biot compressional waves. J Comput Acoust 3:261–280

    Article  Google Scholar 

  • Denneman AIM, Drijkoningen GG, Smeulders DMJ, Wapenaar K (2002) Reflection and transmission of waves at a fluid/porous-medium interface. Geophysics 67:282–291

    Article  Google Scholar 

  • Deresiewicz H, Rice JT (1964) The effect of boundaries on wave propagation in a liquid-filled porous solid: V. Transmission across a plane interface. Bull Seism Soc Am 54:409–416

    Article  Google Scholar 

  • Deresiewicz H, Skalak R (1963) On uniqueness in dynamic poroelasticity. Bull Seism Soc Am 53:783–788

    Article  Google Scholar 

  • Dutta NC, Odé H (1983) Seismic reflections from a gas-water contact. Geophysics 48:1–2

    Article  Google Scholar 

  • Geertsma J, Smit DC (1961) Some aspects of elastic waves propagation in fluid-saturated porous solids. Geophysics 26:169–181

    Article  Google Scholar 

  • Goloshubin G, Silin D, Vingalov V, Takkand G, Latfullin M (2008) Reservoir permeability from seismic attribute analysis. Lead Edge 27:376–381

    Article  Google Scholar 

  • Gurevich B (1994) Discussion on: “Wave Propagation in heterogeneous, porous media: a velocity-stress, finite difference method,” by N. Dai, A. Vafidis, and E. R. Kanasewich (March–April 1995). Geophysics 327–340

  • Gurevich B, Ciz R, Denneman AIM (2004) Simple expressions for normal incidence reflection coefficients from an interface between fluid-saturated porous materials. Geophysics 69:1372–1377

    Article  Google Scholar 

  • Gurevich B, Lopatnikov SL (1995) Velocity and attenuation of elastic waves in finely layered porous rocks. Geophys J Int 121:933–947

    Article  Google Scholar 

  • Gurevich B, Marschall R, Shapiro SA (1994) Effect of fluid flow on seismic reflections from a thin layer in a porous medium. J Seism Explor 3:125–140

    Google Scholar 

  • Gurevich B, Schoenberg M (1999) Interface boundary conditions for Biot’s equations of poroelasticity. J Acoust Soc Am 105:2585–2589

    Article  Google Scholar 

  • Johnson DL (1982) Elastodynamic of gels. J Chem Phys 77:1531–1539

    Article  Google Scholar 

  • Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech 176:379–402

    Article  Google Scholar 

  • Johnson DL, Plona T (1982) Acoustic slow waves and the consolidation transition. J Acoust Soc Am 72:556–565

    Article  Google Scholar 

  • Krief M, Garat J, Stellingwerff J, Ventre J (1990) A petrophysical interpretation using the velocities of P and S waves (full waveform sonic). Log Analyst 31:355–369

  • Li S, Rao Y (2020) Seismic low-frequency amplitude analysis for identifying gas reservoirs within thinly layered media. J Geophys Eng 17:175–188

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  • Pride SR, Harris JM, Johnson DL, Mateeva A , Nihel KT, Nowack RL, Rector JW, Spetzler H, Wu R, Yamomoto T (2003) Permeability dependence of seismic amplitudes. Lead Edge 22:518–525

  • Quiroga-Goode G, Carcione JM (1997) Wave dynamics at an interface in porous media. Boll Geos Teor Appl 38:165–178

    Google Scholar 

  • Rasolofosaon PNJ (1988) Importance of interface hydraulic condition on the generation of second bulk compressional wave in porous media. Appl Phys Lett 52:780–782

    Article  Google Scholar 

  • Rosenbaum JH (1974) Synthetic microseismograms: logging in porous formations. Geophysics 39:14–32

    Article  Google Scholar 

  • Silin DB, Goloshubin GM (2010) An asymptotic model of seismic reflection from a permeable layer. Transp Porous Media 83:233–256

    Article  Google Scholar 

  • Silin DB, Korneev VA, Goloshubin GM, Patzek TW (2006) Low-frequency asymptotic analysis of seismic reflection from a fluid-saturated medium. Transp Porous Media 62(3):283–305

    Article  Google Scholar 

  • Xu D, Wang Y, Gan Q, Tang J (2011) Frequency-dependent seismic reflection coefficient for discriminating gas reservoirs. J Geophys Eng 8:508–513

    Article  Google Scholar 

  • White JE, Mikhaylova NG, Lyakhovitskiy FM (1975) Low frequency seismic waves in fluid saturated layered rocks. Izvestija Acad Sci USSR Phys Solid Earth 11:654–659

    Google Scholar 

  • Zhou D, Yin X, Zong Z (2020) Closed-form expressions of plane-wave reflection and transmission coefficients at a planar interface of porous media with a normal incident fast P-wave. Geophys Pure Appl. https://doi.org/10.1007/s00024-019-02383-1

    Article  Google Scholar 

Download references

Funding

Funding was provided by Jiangsu Province Science Fund for Distinguished Young Scholars (Grant Number BK20200021), the National Natural Science Foundation of China (grant no. 41974123) and the Jiangsu Innovation and Entrepreneurship Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Approximations of the Normal-Incidence Reflection Coefficient

Appendix A: Approximations of the Normal-Incidence Reflection Coefficient

1.1 A.1 Bourbie et al. Equations

The normal-incidence PP reflection coefficient at an interface separating the incidence medium 1 and the transmission medium 2 reported by Bourbie et al. (1987) is

$$\begin{aligned} R = \frac{1-Z}{1+Z} \cdot (1 + \beta ) \exp ({\mathrm{i}}\tan ^{-1} \beta ), \end{aligned}$$
(16)

where

$$\begin{aligned} \beta = \frac{\sqrt{2} Z^2}{1-Z^2} \cdot \frac{(m_1 - m_2)^2 \phi _1 \phi _2 \sqrt{\omega /\omega _1^c}}{g_1 + g_2 Z \sqrt{\omega _2^c/\omega _1^c}} \end{aligned}$$
(17)
$$\begin{aligned} m_j = \frac{\alpha _j M_j}{E_{Gj}}, \quad g_j = \sqrt{\frac{(1- \alpha _j m_j) m_j \gamma _j}{\alpha _j}}, \quad \omega _j^c = \frac{\phi _j \eta _j}{\kappa _j \rho _{fj}} , \quad \gamma _j = \frac{\phi _j \rho _{fj}}{\rho _j} , \end{aligned}$$
(18)
$$\begin{aligned} Z = \sqrt{\frac{\rho _2 E_{G2}}{\rho _1 E_{G1}}}, \quad E_{Gj} = E_{mj} + \alpha _j^2 M_j , \quad E_{mj} = K_{mj} + 4 \mu _j/3, \end{aligned}$$
(19)
$$\begin{aligned} M_j^{-1} = (\alpha _j - \phi _j)/K_{sj}+ \phi _j/K_{fj}, \quad \alpha _j = 1 - K_{mj}/{K_{sj}}, \end{aligned}$$
(20)
$$\begin{aligned} \rho _j = (1 - \phi _j ) \rho _{sj} + \phi _j \rho _{fj}, \end{aligned}$$
(21)

where \(\omega\) is the angular frequency, \(K_m\) and \(\mu\) are the dry-rock bulk and shear moduli, respectively, \(\rho _s\) and \(\rho\) are the solid and bulk densities, respectively, \(\kappa\) is permeability, and \({\mathrm{i}}= \sqrt{-1}\).

1.2 A.2 Gurevich et al. Equations

Gurevich et al. (2004) approximations of the wavenumbers of the fast and slow waves are (their Eqs. 10 and 11),

$$\begin{aligned} l_1 \approx \omega \sqrt{\frac{\rho }{E_G}} , \quad l_2 \approx \sqrt{\frac{{\mathrm{i}}\omega \eta E_G}{\kappa M E_m}} , \end{aligned}$$
(22)

to be compared with the exact ones, obtained from the dispersion Eq. (5).

Gurevich et al. (2004, Eq. 22) PP reflection coefficient is

$$\begin{aligned} R = \frac{1- (1-X)Z}{1+(1+X)Z} , \end{aligned}$$
(23)

where

$$\begin{aligned} X = \frac{ \sqrt{- {\mathrm{i}}\omega \rho _1 E_{G1}} \cdot (m_1 - m_2)^2}{P_1 + P_2} , \end{aligned}$$
(24)
$$\begin{aligned} P_j = \sqrt{\frac{\eta _j M_j E_{mj}}{\kappa _j E_{Gj}}}. \end{aligned}$$
(25)

1.3 A.3 Silin and Goloshubin expression

The normal-incidence PP reflection coefficients at an interface separating the incidence medium 1 and the transmission medium 2 reported by Silin and Goloshubin (2010, their Eq. 88; see Eqs. 9, 15, 24, 35, 64, 75, 78, 84-87) is

$$\begin{aligned} R_k = r_0 + r_1 \sqrt{\epsilon _k}, \quad \epsilon = \frac{{\mathrm{i}}\omega \kappa \rho _f}{\eta }, \end{aligned}$$
(26)

where

$$\begin{aligned} r_0 = \frac{I_1 - I_2}{I_1 + I_2} , \quad r_1 = \frac{t - r}{I_1 + I_2} \cdot I_2 , \end{aligned}$$
(27)
$$\begin{aligned} I_j = \frac{E_{mj}}{v_{mj}}\sqrt{ \frac{u_j}{\xi _j}} = \sqrt{\rho _j E_{mj}} \sqrt{ \frac{u_j}{\xi _j}}, \quad u_j = \zeta _j^2 + \xi _j, \end{aligned}$$
(28)
$$\begin{aligned} \xi _j = \left[ \frac{\phi _j}{K_{fj}} + \frac{(K_{sj} - K_{mj}) (1 - \phi _j)}{K_{sj}^2} \right] K_{mj} , \quad \zeta _j= 1 - \frac{K_{mj} (1-\phi _j)^2}{K_{sj}}, \end{aligned}$$
(29)
$$\begin{aligned} r = \frac{A u_2}{D \zeta _2} , \quad t = \frac{A u_1}{D \zeta _1} , \end{aligned}$$
(30)
$$\begin{aligned} D = \frac{1}{\zeta _1 \zeta _2} \cdot \left( \frac{E_{m2} u_1 \sqrt{u_2}}{\sqrt{\bar{\epsilon }} v_{f2}} + \frac{E_{m1} u_2 \sqrt{u_1}}{v_{f1}} \right) , \end{aligned}$$
(31)
$$\begin{aligned} A = \frac{2 I_1 I_2}{I_1+I_2} \left( \frac{\zeta _1}{u_1} - \frac{\zeta _2}{u_2} \right) , \end{aligned}$$
(32)
$$\begin{aligned} v_{mj} = \sqrt{\frac{E_{mj}}{\rho _j}} , \quad v_{fj} = \sqrt{\frac{E_{mj}}{\rho _{fj}}} , \quad \bar{\epsilon }= \frac{\epsilon _2}{\epsilon _1} . \end{aligned}$$
(33)

Note that \(I_j\) [Eq. (28)] are not Gassmann impedances \(\left( \sqrt{\rho _j E_{mj}}\right)\) as in the other approximations. Since subindex k is undetermined in Silin and Goloshubin (2010) [see Eq. (26)], we consider two reflections coefficients, corresponding to \(\epsilon\) of medium 1 (\(k = 1\)) and \(\epsilon\) of medium 2 (\(k = 2\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carcione, J.M., Gei, D., Gurevich, B. et al. On the Normal-Incidence Reflection Coefficient in Porous Media. Surv Geophys 42, 923–942 (2021). https://doi.org/10.1007/s10712-021-09646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-021-09646-4

Keywords

Navigation