Skip to main content

Advertisement

Log in

MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Both GRACE and GOCE have proven to be very successful missions, providing a wealth of data which are exploited for geophysical studies such as climate changes, hydrology, sea level changes, solid Earth phenomena, with benefits for society and the whole world population. It is indispensable to continue monitoring gravity and its changes from space, so much so that a GRACE follow-on mission has been launched in 2018. In this paper, a new satellite mission concept named MOCASS is presented, which can be considered as a GOCE follow-on, based on an innovative gradiometer exploiting ultra-cold atom technology and aimed at monitoring Earth mass distribution and its variations in time. The technical aspects regarding the payload will be described, illustrating the measurement principle and the technological characteristics of a cold atom interferometer that can measure gravity gradients. The results of numerical simulations will be presented for a one-arm and a two-arm gradiometer and for different orbit configurations, showing that an improvement with respect to GOCE could be obtained in the estimate of the static gravity field over all the harmonic spectrum (with an expected error of the order of 1 mGal at degree 300 for a 5-year mission) and that estimates are promising also for the time-variable gravity field (although GRACE is still performing better at very low degrees). Finally, the progress achievable by exploiting MOCASS observations for the detection and monitoring of geophysical phenomena will be discussed: the results of simulations of key geophysical themes (such as mass changes due to hydrology, glaciers and tectonic effects) with expected gravity change-rates, time constants and corresponding wavelengths, show that an improvement is attainable and that signals invisible to past satellites could be detected by exploiting the cold atom technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bahr DB, Pfeffer WT, Kaser G (2015) A review of volume-area scaling of glaciers. Rev Geophys 53:95–140. https://doi.org/10.1002/2014RG000470

    Article  Google Scholar 

  • Becker D, Lachmann MD, Seidel ST et al (2018) Space-borne Bose–Einstein condensation for precision interferometry. Nature 562:391–395. https://doi.org/10.1038/s41586-018-0605-1

    Article  Google Scholar 

  • Bender PL, Wiese DN, Nerem RS (2009) A possible dual-GRACE mission with 90 and 63 inclination orbits. In: Proceedings of the 3rd international symposium on formation flying, missions and technologies, Noordwijk (NL), April 2008

  • Braitenberg C, Shum CK (2017) Geodynamic implications of temporal gravity changes over Tibetan Plateau. Ital J Geosci 1361:39–49. https://doi.org/10.3301/IJG.2015.38

    Article  Google Scholar 

  • Carraz O, Siemes C, Massotti L, Haagmans R, Silvestrin P (2014) A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field. Microgravity Sci Technol 26:139–145. https://doi.org/10.1007/s12217-014-9385-x

    Article  Google Scholar 

  • Cesare S, Allasio A, Anselmi A, Dionisio S, Mottini S, Parisch M, Massotti L, Silvestrin P (2016) The European way to gravimetry: From GOCE to NGGM. Adv Space Res 57(4):1047–1064. https://doi.org/10.1016/j.asr.2015.12.012

    Article  Google Scholar 

  • Cheinet P, Canuel B, Pereira Dos Santos F, Gauguet A, Yver-Leduc F, Landragin A (2008) Measurement of the sensitivity function in a time-domain atomic interferometer. IEEE Trans Instrum Meas 57(6):1141–1148. https://doi.org/10.1109/TIM.2007.915148

    Article  Google Scholar 

  • Chen W, Braitenberg C, Serpelloni E (2018) Interference of tectonic signals in subsurface hydrologic monitoring through gravity and GPS due to mountain building. Glob Planet Change 167:148–159. https://doi.org/10.1016/j.gloplacha.2018.05.003

    Article  Google Scholar 

  • Colombo OL (1981) Numerical methods for harmonic analysis on the sphere. Report No. 310, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, OH

  • Dobslaw H, Bergmann-Wolf I, Dill R, Forootan E, Klemann V, Kusche J, Sasgen I (2015) The updated ESA Earth System Model for future gravity mission simulation studies. J Geod 89(5):505–513. https://doi.org/10.1007/s00190-014-0787-8

    Article  Google Scholar 

  • Douch K, Wu H, Schubert C, Müller J, Pereira Dos Santos F (2018) Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery. Adv Space Res 61(5):1307–1323. https://doi.org/10.1016/j.asr.2017.12.005

    Article  Google Scholar 

  • Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA's first Earth Explorer Core Mission. In: Beutler G, Drinkwater MR, Rummel R, Steiger R (eds) Earth gravity field from space—from sensors to Earth science, Space Sciences Series of ISSI, 17. Springer, Dordrecht, pp 419–432

    Chapter  Google Scholar 

  • Dutta I, Savoie D, Fang B, Venon B, Garrido Alzar CL, Geiger R, Landragin A (2016) Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability. Phys Rev Lett 116(18):183003. https://doi.org/10.1103/PhysRevLett.116.183003

    Article  Google Scholar 

  • Flechtner F, Morton P, Watkins M, Webb F (2014) Status of the GRACE follow-on mission. In: Marti U (ed) Gravity, geoid and height systems (GGHS 2012). International Association of Geodesy Symposia, vol 141. pp 117–121. https://doi.org/10.1007/978-3-319-10837-7_15

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine J-M, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/icgem.2015.1

  • Foot CJ (2004) Atomic physics. Oxford University Press, Oxford

    Google Scholar 

  • Fu Y, Freymueller JT (2012) Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J Geophys Res Solid Earth 117:B03407. https://doi.org/10.1029/2011JB008925

    Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857. https://doi.org/10.1126/science.1234532

    Article  Google Scholar 

  • Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y et al (2011) Detecting inertial effects with airborne matter-wave interferometry. Nat Commun 2:474. https://doi.org/10.1038/ncomms1479

    Article  Google Scholar 

  • Gruber T, Bamber JL, Bierkens MFP, Dobslaw H, Murböck M, Thomas M, van Beek LPH, van Dam T, Vermeersen A, Visser PNAM (2011) Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst Sci Data 3(1):19–35. https://doi.org/10.5194/essd-3-19-2011

    Article  Google Scholar 

  • Gruber T, Murböck M, NGGM-D Team (2014) e2.motion—Earth System Mass Transport Mission (Square)—Concept for a Next Generation Gravity Field Mission. Final Report of Project “Satellite Gravimetry of the Next Generation (NGGM-D)”, Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Series B, vol 2014, no 318, C.H. Beck, ISBN (Print) 978-3-7696-8597-8. https://dgk.badw.de/fileadmin/docs/b-318.pdf

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Hogan JM, Johnson DMS, Kasevich MA (2009) Light-pulse atom interferometry. In: Arimondo E, Ertmer W, Schleich WP, Rasel E (eds) Atom optics and space physics, Proceedings of the International School of Physics “Enrico Fermi”, course168. IOS Press Amsterdam, Washington

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518. https://doi.org/10.1038/nature10847

    Article  Google Scholar 

  • Kasevich M, Chu S (1992) Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl Phys B 54(5):321–332. https://doi.org/10.1007/BF00325375

    Article  Google Scholar 

  • Kornfeld RP, Arnold BW, Gross MA, Dahya NT, Klipstein WK, Gath PF, Bettadpur S (2019) GRACE-FO: the gravity recovery and climate experiment follow-on mission. J Spacecr Rockets. https://doi.org/10.2514/1.A34326

    Google Scholar 

  • Kovachy T, Hogan JM, Sugarbaker A, Dickerson SM, Donnelly CA, Overstreet C, Kasevich MA (2015) Matter wave lensing to picokelvin temperatures. Phys Rev Lett 114:143004. https://doi.org/10.1103/PhysRevLett.114.143004

    Article  Google Scholar 

  • Lan SY, Kuan PC, Estey B, Haslinger P, Mueller H (2012) Influence of the coriolis force in atom interferometry. Phys Rev Lett 108:090402. https://doi.org/10.1103/PhysRevLett.108.090402

    Article  Google Scholar 

  • Liang S, Gan W, Shen C, Xiao G, Liu J, Chen W, Ding X, Zhou D (2013J) Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J Geophys Res 118:5722–5732. https://doi.org/10.1002/2013JB01050

    Article  Google Scholar 

  • Matsuo K, Heki K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290:30–36. https://doi.org/10.1016/j.epsl.2009.11.053

    Article  Google Scholar 

  • Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of coloured noise. J Geod 78(4–5):304–313. https://doi.org/10.1007/s00190-004-0396-z

    Article  Google Scholar 

  • Migliaccio F, Reguzzoni M, Sansò F, Tselfes N (2007) On the use of gridded data to estimate potential coefficients. In: Proceedings 3rd GOCE User Workshop, Frascati, ESRIN, November 2006, ESA SP-627, European Space Agency, Noordwijk, pp 311–318

  • Migliaccio F, Reguzzoni M, Sansò F, Tselfes N (2009) An error model for the GOCE space-wise solution by Monte Carlo Methods. In: Sideris MG (eds) Observing our changing Earth. International Association of Geodesy Symposia, vol 133. Springer, Berlin. https://doi.org/10.1007/978-3-540-85426-5_40

    Google Scholar 

  • Pail R (eds) (2015) Observing mass transport to understand global change and to benefit society: science and user needs. Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Reihe B, Angewandte Geodäsie, Heft Nr. 320, pp 1–124

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. https://doi.org/10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Pail R, Bingham R, Braitenberg C, Dobslaw H, Eicker A, Guntner A, Horwath M, Ivins E, Longuevergne L, Panet I, Wouters B, IUGG Expert Panel (2015) Science and user needs for observing global mass transport to understand global change and to benefit society. Surv Geophys 36(6):743–772. https://doi.org/10.1007/s10712-015-9348-9

    Article  Google Scholar 

  • Pail R, Bamber J, Biancale R, Bingham R, Braitenberg C, Cazenave A, Eicker A, Flechtner F, Gruber T, Güntner A, Heinzel G, Horwath M, Longuevergne L, Müller J, Panet I, Savenije H, Seneviratne S, Sneeuw N, van Dam T, Wouters B (2019) Mass variation observing system by high low inter satellite links (MOBILE)—a new concept for sustained observation of mass transport from space. J Geod Sci (under review)

  • Panet I, Flury J, Biancale R, Gruber T, Johannessen J, van den Broeke MR, van Dam T, Gegout P, Hughes CW, Ramillien G, Sasgen I, Seoane L, Thomas M (2013) Earth System Mass Transport Mission (e.motion): a concept for future earth gravity field measurements from space. Surv Geophys 34(2): 141–163. https://doi.org/10.1007/s10712-012-9209-8

    Article  Google Scholar 

  • Papoulis A (1984) Probability, random variables, and stochastic processes. Front Cover. McGraw-Hill—Mathematics

  • Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen JO, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Molg N, Paul F, Radic V, Rastner P, Raup B, Rich J, Sharp M (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60:537–552. https://doi.org/10.3189/2014JoG13J176

    Article  Google Scholar 

  • Reguzzoni M (2003) From the time-wise to space-wise GOCE observables. Adv Geosci 1:137–142

    Article  Google Scholar 

  • Reguzzoni M, Tselfes N (2009) Optimal multi-step collocation: application to the space- wise approach for GOCE data analysis. J Geod 83(1):13–29. https://doi.org/10.1007/s00190-008-0225-x

    Article  Google Scholar 

  • Reguzzoni M, Gatti A, De Gaetani CI, Migliaccio F, Sansò F (2014) Locally adapted space-wise grids from GOCE data. Geophysical Research Abstracts vol 16, EGU2014-14010, 2014 EGU General Assembly 2014

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenaul K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394. https://doi.org/10.1175/BAMS-85-3-381

    Article  Google Scholar 

  • Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino GM (2014) Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510: 518-521. https://doi.org/10.1038/nature13433

    Article  Google Scholar 

  • Roura A (2017) Circumventing Heisenberg’s uncertainty principle in atom interferometry tests of the equivalence principle. Phys Rev Lett 118: 160-401. https://doi.org/10.1103/PhysRevLett.121.128903

    Article  Google Scholar 

  • Sneeuw N, van Gelderen M (1997) The polar gap. In: Sansó F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid Lecture Notes in Earth Sciences, vol 65. Springer, Berlin.

  • Sorrentino F, Bertoldi A, Bodart Q, Cacciapuoti L, de Angelis M, Lien Y, Prevedelli M, Rosi G, Tino GM (2012) Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer. Appl Phys Lett 101: 114106. https://doi.org/10.1063/1.4751112

    Article  Google Scholar 

  • Sorrentino F, Bodart Q, Cacciapuoti L, Lien YH, Prevedelli M, Rosi G, Salvi L, Tino GM (2014) Sensitivity limits of a Raman atom interferometer as a gravity gradiometer. Phys Rev A 89:023607. https://doi.org/10.1103/PhysRevA.89.023607

    Article  Google Scholar 

  • Tapley B, Reigber C (2001) The GRACE mission: status and future plans. EOS Transactions American Geophysical Union, 82(47), Fall Meet. Suppl., Abstract G41C-02

  • Tino GM, Kasevich MA (eds) (2014) Atom interferometry: proceedings of the International School of Physics “Enrico Fermi”, Course 188, Varenna on Lake Como, Villa Monastero, 15–20 July 2013, IOS Press and Società Italiana di Fisica

  • Tino GM, Sorrentino F, Aguilera D, Battelier B, Bertoldi A, Bodart Q, Bongs K, Bouyer P, Braxmaier C, Cacciapuoti L, Gaaloul N, Gurlebeck N, Hauth M, Herrmann S, Krutzik M, Kubelka A, Landragin A, Milke A, Peters A, Rasel EM, Rocco E, Schubert C, Schuldt T, Sengstock K, Wicht A (2013) Precision gravity tests with atom interferometry in space. Nucl Phys B Proc Suppl 243–244:203–217. https://doi.org/10.1016/j.nuclphysbps.2013.09.023

    Article  Google Scholar 

  • Uieda L, Barbosa VCF, Braitenberg C (2016) Tesseroids: forward modeling gravitational fields in spherical coordinates. Geophysics 81(5):F41–F48. https://doi.org/10.1190/GEO2015-0204.1

    Article  Google Scholar 

  • Wessel P, Sandwell DT, Kim SS (2010) The global seamount census. Oceanography 23(1):24–33. https://doi.org/10.5670/oceanog.2010.60

    Article  Google Scholar 

  • Yi S, Freymueller JT, Sun W (2016) How fast is the middle-lower crust flowing in eastern Tibet? A constraint from geodetic observations. J Geophys Res 121:6903–6915. https://doi.org/10.1002/2016JB013151

    Article  Google Scholar 

Download references

Acknowledgements

The MOCASS study has been funded under ASI Contract No. 2016–9-U-0 “Proposal of a satellite mission and sensor concept based on advanced atom interferometry accelerometers for high resolution monitoring of mass variations on and below the Earth surface”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Migliaccio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliaccio, F., Reguzzoni, M., Batsukh, K. et al. MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field. Surv Geophys 40, 1029–1053 (2019). https://doi.org/10.1007/s10712-019-09566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-019-09566-4

Keywords

Navigation