Skip to main content
Log in

Integrated Electrical Resistivity Tomography and Ground Penetrating Radar Measurements Applied to Tomb Detection

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The integrated use of electrical resistivity tomography (ERT) and ground penetrating radar (GPR) measurements, and in particular the joint analysis of 2D and 3D data, can represent a valid solution for target identification at complex archaeological sites. A good example, in this respect, is given by the case study of a Phoenician–Punic necropolis in the archaeological site of Nora, in southern Sardinia (Italy), where GPR and ERT measurements were collected before site excavation. In this specific case, the mix of soil and air in the buried chambers, as well as the orientation and the complex spatial distribution of these structures into the sandstone bedrock, generated a number of anomalies difficult to interpret only using 2D results. Only the integration of all GPR and ERT data in a 3D view, and the comparison with archaeological evidence after the excavation, allowed a solid interpretation of geophysical anomalies visible in the 2D sections. Overall, this case study demonstrates the efficiency of the combined use of GPR and ERT acquisitions and shows how, in general, only the joint analysis of 2D data and in a 3D view can help the interpretation of the real distribution of the buried archaeological remains at similar archaeological complex sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The Archaeological Mission in Nora is sustained by the Universities of Padova, Milano, Genova and Cagliari. The Soprintendenza Archeologia Belle Arti Paesaggio coordinates the activities with appreciated efforts.

  2. Nemetschek Vectorworks 2013®.

References

  • Abbas AM, Khalil MA, Massoud U, Santos FM, Mesbah HA, Lethy A, Soliman M, Ragab ESA (2012) The implementation of multi-task geophysical survey to locate Cleopatra tomb at tap-Osiris Magna, Borg El-Arab, Alexandria, Egypt “phase II”. NRIAG-JAG 1:1–11

    Google Scholar 

  • Amadasi Guzzo G (1990) Le iscrizioni fenicio puniche in Italia. Istituto poligrafico e Zecca dello Stato, Roma

    Google Scholar 

  • Arato A, Piro S, Sambuelli L (2015) 3D inversion of ERT data on an archaeological site using GPR reflection and 3D inverted magnetic data as a priori information. Near Surf Geophys. https://doi.org/10.3997/1873-0604.2015046

    Article  Google Scholar 

  • Athanasiou E, Tsourlos P, Vargemezis G, Papazachos C, Tsokas GN (2007) Non-destructive DC resistivity surveying using flat-base electrodes: near Surface. Geophysics 5:263–272

    Google Scholar 

  • Bartoloni P (1987) La Tomba 2 AR della necropoli di Sulcis. Rivista di Studi Fenici XV, Consiglio nazionale delle ricerche 1:57–73

  • Bartoloni P (2000) La necropoli di Monte Sirai. I. Collezione di Studi Fenici, 41. Consiglio nazionale delle ricerche, Roma

  • Bartoloni P (2009) Archeologia fenicio-punica in Sardegna. Introduzione allo studio. CUEC editrice, Cagliari

    Google Scholar 

  • Bartoloni P (2015) Il rituale funebre fenicio e punico. In: Mannia S, Buttitta IE (eds) La morte e i morti nelle società euromediterranee. Atti del Convegno internazionale Palermo, Palermo, pp 45–58

    Google Scholar 

  • Batayneh A (2011) Archaeogeophysics-archaeological prospection—a mini review. J King Saud Univ Sci 23:83–89. https://doi.org/10.1016/j.jksus.2010.06.011

    Article  Google Scholar 

  • Belina FA, Dafflon B, Tronicke J, Holliger K (2009) Enhancing the vertical resolution of surface georadar data. J Appl Geophys 68:26–35. https://doi.org/10.1016/j.jappgeo.2008.08.011

    Article  Google Scholar 

  • Berard BA, Maillol JM (2008) Common- and multi-offset ground-penetrating radar study of a Roman villa, Tourega, Portugal. Archaeol Prospect 15:32–46. https://doi.org/10.1002/arp.319

    Article  Google Scholar 

  • Berge M, Drahor M (2011) Electrical resistivity tomography investigations of multilayered archaeological settlements: part II—a case from old Smyrna Höyük. Prospect, Turkey Archaeol. https://doi.org/10.1002/arp.423

    Book  Google Scholar 

  • Bonetto J (2002) Nora municipio romano. In: Khanoussi M (ed) L’Africa romana. Lo spazio marittimo del Mediterraneo occidentale. Geografia storica ed economia, Atti del 14. Convegno di studio (Sassari, 7-10 dicembre 2000). Carocci Editore, Roma, pp 1199–1217

  • Bonetto J (2009) L’insediamento di età fenicia, punica e romana repubblicana nell’area del foro di Nora. In: Bonetto J, Ghiotto AR, Novello M (ed) Nora. Il foro romano. Storia di un’area urbana dall’età fenicia alla tarda antichità, I. Lo scavo, Scavi di Nora 1:41–243. Italgraf editore, Padova

  • Bonetto J (2014) L’insediamento fenicio di Nora e le comunità nuragiche: contatti e distanze. In: Van Dommelen P, Roppa A (eds) Materiali e contesti nell’età del ferro sarda, Atti della giornata di studi (Museo civico di San Vero Milis, 25 maggio 2012), Rivista di Studi Fenici 41:1. Fabrizio Serra editore, Roma, pp 173–182

    Google Scholar 

  • Bonetto J (2016a) Nora da colonia cartaginese a municipio romano. In: De Vincenzo S, Blasetti Fantauzzi C (ed.) Il processo di romanizzazione della provincia Sardinia et Corsica, Atti del Convegno internazionale (Cuglieri (Or), 26–28 marzo 2015), Analysis Archaeologica. An International Journal of Western Mediterranean Archaeology, Monograph series n. 1. Edizioni Quasar, Roma, pp 165–190

  • Bonetto J (2016b) Vecchie e nuove conoscenze per lo studio delle necropoli fenicie e puniche di Nora. In: Botto M, Finocchi S, Garbati G, Oggiano I (eds) “Lo mio maestro e ‘l mio autore” Studi in onore di Sandro Filippo Bondì. Rivista di Studi Fenici, XLIV, Quasar edizioni, Roma, pp 263–274

    Google Scholar 

  • Bonetto J, Botto M (2017) Tra i primi a Nora. Una sepoltura a cremazione nella necropoli sull’istmo, Quaderni della Soprintendenza di Cagliari, 28. Ministero per i Beni e le Attività Culturali, pp 193–214

  • Bonetto J, Ghiotto AR (2013) Nora nei secoli dell’Altomedioevo. In: Martorelli R (ed.) Settecento-Millecento. Storia, Archeologia e Arte nei “secoli bui” del Mediterraneo. Dalle fonti scritte, archeologiche ed artistiche alla ricostruzione della vicenda storica. La Sardegna laboratorio di esperienze culturali, Atti del Convegno (Cagliari, 17–19 ottobre 2012). Scuola sarda editrice, Cagliari, pp 271–290

  • Bonetto J, Ghiotto AR (2017) Le città della Sardegna in età romana. In: Angiolillo S, Martorelli R, Giuman M, Corda A M, Artizzu D (edd.) La Sardegna romana e altomedievale. Storia e materiali, Corpora delle Antichità della Sardegna. Carlo Delfino editore, Cagliari, pp 45–56

  • Bonetto J, Andreatta C, Berto S, Bison L, Bridi E, Covolan M, Dilaria S, Mazzariol A, Ranzato M (2017a) La necropoli fenicio-punica e le infrastrutture romane nell’area della ex Base della Marina Militare. Quaderni Norensi. Padova University Press, 6:169–188

  • Bonetto J, Carraro F, Mazzariol A (2017b) Nora e il mare. La necropoli punica orientale: le nuove acquisizioni e il rischio idrogeologico. Quaderni Norensi. Padova University Press, 6:191–199

  • Booth AD, Linford NT, Clark RA, Murray T (2008) Three-dimensional, multi-offset ground-penetrating radar imaging of archaeological targets. Archaeol Prospect 15:93–112. https://doi.org/10.1002/arp.327

    Article  Google Scholar 

  • Bottari C, Aringoli D, Carluccio R, Castellano C, D’Ajello Caracciolo F, Gasperini M, Materazzi M, Nicolosi I, Pambianchi G, Pieruccini P, Sepe V, Urbini S, Varazi F (2017) Geomorphological and geophysical investigations for the characterization of the Roman Carsulae site (Tiber basin, Central Italy). J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2017.03.021

    Article  Google Scholar 

  • Botto M (2011) 1992–2002: Dieci anni di prospezioni topografiche a Nora e nel suo territorio. In: Bonetto J, Falezza G (edd.) Vent’anni di scavi a Nora. Formazione, ricerca e politica culturale, Atti della Giornata di studio (Padova, 22 marzo 2010), Scavi di Nora II. Italgraf editore, Padova, pp 59–84

  • Boubaki N, Saintenoy A, Tucholka P (2011) GPR profiling and electrical resistivity tomography for buried cavity detection: a test site at the abbaye de l’Ouye (France), In: 2011 6th international workshop on advanced ground penetrating radar (IWAGPR), Aachen https://doi.org/10.1109/IWAGPR.2011.5963852

  • Campana S, Piro S (2009) Seeing the unseen—geophysics and landscape archaeology. CRC Press, London

    Google Scholar 

  • Cardarelli E, Di Filippo G, Tuccinardi E (2006) Electrical resistivity tomography to detect buried cavities in Rome: a case study. Near Surf Geophys 4:387–392

    Article  Google Scholar 

  • Cardarelli E, Fischanger F, Piro S (2008) Integrated geophysical survey to detect buried structures for archaeological prospecting. A case-history at Sabine Necropolis (Rome, Italy). Near Surf Geophys 6:15–20

    Article  Google Scholar 

  • Conyers LB (2015a) Ground-penetrating radar data analysis for more complete archaeological interpretations. Archaeol Pol 53:202–207

    Google Scholar 

  • Conyers LB (2015b) Analysis and interpretation of GPR datasets for integrated archaeological mapping: Multiple GPR datasets for integrated archaeological mapping. Near surf geophys 31:2241–2262

    Google Scholar 

  • Daily WA, Ramirez A, Binley A, LaBrecque D (2004) Electrical resistivity tomography. Lead Edge 23:438–442

    Article  Google Scholar 

  • de Silva F, d’Onofrio A, Evangelista L, Fascia F, Silvestri F, Scotto di Santolo A, Sica S, Cavuoto G, Di Fiore V, Punzo M, Vettimo di Scotto P, Tarallo D (2014). Application of ERT and GPR geophysical testing to the geotechnical characterization of historical sites. https://doi.org/10.13140/2.1.2222.4645

  • Di Gregorio F, Floris C, Matta P (2000) Lineamenti geologici e geomorfologici della penisola di Nora. In: Tronchetti C (ed) Ricerche su Nora, I, anni 1990–1998. Ministero per i Beni e le Attività Culturali, Cagliari, pp 9–17

    Google Scholar 

  • Drahor M (2011) A review of integrated geophysical investigations from archaeological and cultural sites under encroaching urbanisation in İzmir, Turkey. Phys Chem Earth Phys Chem Earth. https://doi.org/10.1016/j.pce.2011.03.010

    Article  Google Scholar 

  • Economou N, Benedetto F, Bano M, Tzanis A, Nyquist J, Sandmeier KJ, Cassidy N (2017) Editorial of SI: GPR signal processing. Sig Process. https://doi.org/10.1016/j.sigpro.2016.07.032

    Article  Google Scholar 

  • Edwards M, Okita W, Goodman D (2000) Investigation of a subterranean tomb in Miyazaki, Japan. Archaeol Prospect 7:215–224

    Article  Google Scholar 

  • Ekinci YL, Kaya M, Başaran C, Kasapoğlu H, Demirci A, Durgut C (2012) Geophysical imaging survey in the South Necropolis at the Ancient City of Parion (Kemer-Biga), NW Anatolia, Turkey: preliminary Results. Mediterr Archaeol Archaeom 12:145–158

    Google Scholar 

  • El-Behiry MG (2000) Nondestructive geophysical surveys for delineating buried tombs and identifying environmental status. In: Proceedings for SAGEEP 2000, Washington D.C., pp 399–406

  • El-Qady G, Hafez M, Abdalla MA, Ushijima K (2005) Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar. J Cave Karst Stud 67:174–181

    Google Scholar 

  • Ernenwein EG, Kvamme KL (2008) Data processing issues in large-area GPR surveys: correcting trace misalignments, edge discontinuities and striping. Archaeol Prospect 15:133–149

    Article  Google Scholar 

  • Fassbinder J (2011). Geophysical prospection: a powerful non-destructive research method for the detection, mapping and preservation of monuments and sites. In: CEUR workshop proceedings. 806. 1

  • Francese R, Finzi E, Morelli G (2009) 3-D high-resolution multi-channel radar investigation of a Roman village in Northern Italy. J Appl Geophys 67:44–51. https://doi.org/10.1016/j.jappgeo.2008.09.004

    Article  Google Scholar 

  • Gaffney C (2008) Detecting trends in the prediction of the buried past: a review of geophysical techniques in archaeology. Archaeometry 50:313–336. https://doi.org/10.1111/j.1475-4754.2008.00388.x

    Article  Google Scholar 

  • Gaffney C (2009) Geophysical survey in archaeological field evaluation. Archaeol Prospect 16:139–140. https://doi.org/10.1002/arp.346

    Article  Google Scholar 

  • Gaffney C, Gater J (2003) Revealing the buried past: geophysics for archaeologists. The History Press, UK

    Google Scholar 

  • Goodman D, Novo A, Morelli G, Piro S, Kutruber D, Henrique L (2011). Advances in GPR Imaging with multi‐channel radar systems from engineering to archaeology. In: Proceedings of the symposium on the application of geophysics to engineering and environmental problems, SAGEEP. https://doi.org/10.4133/1.3614128

  • Kofman L, Ronen A, Frydman S (2006) Detection of model voids by identifying reverberation phenomena in GPR records. J Appl Geophys 59:284–299. https://doi.org/10.1016/j.jappgeo.2005.09.005

    Article  Google Scholar 

  • Küçükdemirci M, Özer E, Piro S, Baydemir N, Zamuner D (2017) An application of integration approaches for archaeo-geophysical data: case study from Aizanoi. Archaeol Prospect. https://doi.org/10.1002/arp.1583

    Article  Google Scholar 

  • LaBrecque DJ, Morelli G, Daily W, Ramirez A, Lundegard P (1999) Occam’s inversion of 3D ERT data. In: Spies B (ed) Three-dimensional electromagnetics. SEG, Tulsa, pp 575–590

    Chapter  Google Scholar 

  • Leckebusch J (2003) Ground-penetrating radar: a modern three-dimensional prospection method. Archaeol Prospect 10:213–240. https://doi.org/10.1002/arp.211

    Article  Google Scholar 

  • Leckebusch J (2005) Use of antenna arrays for GPR surveying in archaeology. Near Surf Geophys. https://doi.org/10.3997/1873-0604.2005006

    Article  Google Scholar 

  • Leckebusch J, Peikert R, Hauser M (2001) Advances in 3D visualization of georadar data. Archaeological prospection. In: 4th international conference on archaeological prospection, Vienna, pp 143–144

  • Leucci G (2006) Contribution of ground-penetrating radar and electrical resistivity tomography to identify the cavity and fractures under the main church in Botrugno (Lecce, Italy). J Archaeol Sci 33:1194–1204

    Article  Google Scholar 

  • Leucci G, Negri S (2006) Use of ground penetrating radar to map subsurface archaeological features in an urban area. J Archaeol Sci 33:502–512. https://doi.org/10.1016/j.jas.2005.09.006

    Article  Google Scholar 

  • Leucci G, De Giorgi L, Di Giacomo G, Ditaranto I, Miccoli I, Scardozzi G (2016) 3D GPR survey for the archaeological characterization of the ancient Messapian necropolis in Lecce, South Italy. J Archaeol Sci Rep 7:290–302. https://doi.org/10.1016/j.jasrep.2016.05.027

    Article  Google Scholar 

  • Linford N (2006) The application of geophysical methods to archaeological prospection. Rep Prog Phys. https://doi.org/10.1088/0034-4885/69/7/R04

    Article  Google Scholar 

  • Loke M, Chambers J, Rucker D, Kuras O, Wilkinson P (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156. https://doi.org/10.1016/j.jappgeo.2013.02.017

    Article  Google Scholar 

  • López J, Rey J, Gutiérrez LM, Novo A, Ortiz Villarejo AJ, Armijo M, Galdóne JM (2015) Electrical resistivity imaging (ERI) and ground-penetrating radar (GPR) survey at the Giribaile site (upper Guadalquivir valley; southern Spain). J Appl Geophys 123:218–226. https://doi.org/10.1016/j.jappgeo.2015.10.013

    Article  Google Scholar 

  • Mazzariol A, Bonetto J (2017) Nuovi dati d’archivio e nuove evidenze archeologiche sulla necropoli punica orientale di Nora (Cagliari). In: Fold&R, 390, Associazione Internazionale di Archeologia Classica, Roma

  • Negri S, Leucci G, Mazzone F (2008) High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface. J Appl Geophys 65(3–4):111–120

    Article  Google Scholar 

  • Neubauer W, Eder-Hinterleitner A, Seren S, Melichar P (2002) Georadar in the Roman civil town Carnuntum, Austria: an approach for archaeological interpretation of GPR data. Archaeol Prospect 9:135–156

    Article  Google Scholar 

  • Novo A, Grasmueck M, Viggiano DA, Lorenzo H (2008) 3D GPR in archaeology: what can be gained from dense data acquisition and processing? In: Proceedings of the 12th International Conference on Ground Penetrating Radar (GPR 2008), Birmingham, pp 16–19

  • Novo A, Lorenzo H, Rial F, Solla M (2012) From pseudo-3D to full-resolution GPR imaging of a complex Roman site. Near Surf Geophys. https://doi.org/10.3997/1873-0604.2011016

    Article  Google Scholar 

  • Nuzzo L, Leucci G, Negri S, Carrozzo MT, Quarta T (2002) Application of 3D visualization techniques in the analysis of GPR data for archaeology. Ann Geophys 45(2)

  • Orlando L (2013) GPR to constrain ERT data inversion in cavity searching: theoretical and practical applications in archeology. J Appl Geophys 89:35–47

    Article  Google Scholar 

  • Özkan M, Samet O (2017) 3D visualization approach to GPR data. Commun Fac Sci Univ Ankara 59:29–40. https://doi.org/10.1501/commua1-2_0000000102

    Article  Google Scholar 

  • Papadopoulos N, Tsourlos PI, Tsokas GN, Sarris A (2006) 2D and 3D resistivity imaging in archaeological site investigation. Archaeol Prospect 13:163–181. https://doi.org/10.1002/arp.276

    Article  Google Scholar 

  • Papadopoulos NG, Sarris A, Yi MJ, Kim JH (2009) Urban archaeological investigations using surface 3D ground penetrating radar and electrical resistivity tomography methods. Explor Geophys 40:56–68

    Article  Google Scholar 

  • Patroni G (1904) Nora. Colonia fenicia in Sardegna. Monumenti Antichi, 14, Reale Accademia dei Lincei, Ulrico Hoepli editore-libraio della Real Casa e della R. Accademia dei Lincei, Milano, cc 109–268

  • Piro S, Gabrielli R (2009) Multimethodological approach to investigate chamber tombs in the Sabine Necropolis at Colle del Forno (CNR, Rome, Italy). Archaeol Prospect 16:1–14

    Article  Google Scholar 

  • Piro S, Goodman D (2008) Integrated GPR data processing for archaeological surveys in urban area. In: The case of Forum (Roma, Italy), 2008, 12th international conference on ground penetrating radar, Birmingham, UK. Proceedings Extended Abstract Volume

  • Piro S, Tsourlos P, Tsokas GN (2001) Cavity detection employing advanced geophysical techniques: a case study. Eur J Environ Eng Geophys 6:3–31

    Google Scholar 

  • Piscitelli S, Rizzo E, Cristallo F, Lapenna V, Crocco L, Persico R et al (2007) GPR and microwave tomography for detecting shallow cavities in the historical area of Sassi of Matera (Southern Italy). Near Surf Geophys 5:275–285

    Article  Google Scholar 

  • Putiška R, Nikolaj M, Dostál I, Kušnirák D (2012) Determination of cavities using electrical resistivity tomography. Contrib Geophys Geod. https://doi.org/10.2478/v10126-012-0018-3

    Article  Google Scholar 

  • Ribichini S (2004) Sui riti funerari fenici e punici. Tra archeologia e storia delle religioni. In: Gonzalez Prats A (ed) El mundo funerario, Actas del III Seminario internacional sobre temas fenicios (Guardamar del Segura, 3 a5 de mayo de 2002). Universitat de València, Alicante, pp 43–76

    Google Scholar 

  • Roppa A (2013) Comunità urbane e rurali nella Sardegna punica di età ellenistica. Universitat de València, Valencia

    Google Scholar 

  • Samet R, Çelik E, Tural S, Şengönül E, Özkan M, Damci E (2017) Using interpolation techniques to determine the optimal profile interval in ground-penetrating radar applications. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2017.04.003

    Article  Google Scholar 

  • Strapazzon G, Deiana R, Brogiolo GP (2013) Extensive geophysical investigation in urban environment. The case of the episcopal center of Padua. In: Non-destructive approaches to complex archaeological sites in Europe: a round-up”, e-publ. ISBN 978-9-461-97109-8, Ghent, 15-17 January 2013, pp 101–102

  • Testone V, Longo V, Algeri G, Bottacchi M, Campo D (2012) Ground penetrating radar and geoelectrical surveys to investigate the santa filitica archaeological complex (Northern Sardinia). Rend Online Soc Geol Ital 21:675–677

    Google Scholar 

  • Testone V, Longo V, Mameli P, Rovina D (2015). Detection of buried tombs by Electrical Resistivity Tomography and Ground Penetrating Radar

  • Trinks I, Karlsson P, Biwall A, Hinterleitner A (2009) Mapping the urban subsoil using ground penetrating radar: challenges and potentials for archaeological prospection. ArcheoSciences 33:237–240

    Article  Google Scholar 

  • Trinks I, Johansson B, Gustafsson J, Emilsson J, Friborg J, Gustafsson C et al (2010) Efficient, large-scale archaeological prospection using a true three-dimensional ground-penetrating radar array system. Archaeol Prospect 17:175–186

    Article  Google Scholar 

  • Trinks I, Hinterleitner A, Neubauer W, Nau E, Löcker K, Wallner M, Gabler M, Filzwieser R, Wilding J, Schiel H, Jansa V, Schneidhofer P, Trausmuth T, Sandici V, Ruß D, Flöry S, Kainz J, Kucera M, Vonkilch A, Seren S (2018) Large-area high-resolution ground-penetrating radar measurements for archaeological prospection. Archaeol Prospect. https://doi.org/10.1002/arp.1599

    Article  Google Scholar 

  • Tronchetti C (1989) S. Antioco. Sardegna Archeologica, 12, Carlo Delfino editore, Sassari

  • Tsokas GN, Tsourlos PI, Vargemezis G, Novack M (2008) Non-destructive electrical resistivity tomography for indoor investigation: the case of Kapnikarea Church in Athens. Archaeol Prospect 15:47–61

    Article  Google Scholar 

  • Utsi E (2010) The use of ground-penetrating radar to extend the results of archaeological excavation. Near Surf Geophys 8:415–422

    Article  Google Scholar 

  • Verdonck L, Vermeulen F, Docter R, Meyer C, Kniess R (2013) 2D and 3D ground-penetrating radar surveys with a modular system: data processing strategies and results from archaeological field tests. Near Surf Geophys 11:239–252. https://doi.org/10.3997/1873-0604.2013007

    Article  Google Scholar 

  • Verdonck L, Taelman D, Vermeulen F, Docter R (2015) The impact of spatial sampling and migration on the interpretation of complex archaeological ground-penetrating radar data: impact of spatial sampling and migration on interpreting GPR data. Archaeol Prospect. https://doi.org/10.1002/arp.1501

    Article  Google Scholar 

  • Witten AJ (2006) Handbook of geophysics and archaeology. Equinox, UK

    Google Scholar 

  • Zhao W, Tian G, Forte E, Pipan M, Yimin W, Xuejing L, Zhanjie S, Haiyan L (2015a) Advances in GPR data acquisition and analysis for archaeology. Geophys J Int 202(1):62–71

    Article  Google Scholar 

  • Zhao W, Forte E, Pipan M (2015b) Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis. J Archaeol Sci 54:77–85

    Article  Google Scholar 

  • Zhao W, Forte E, Pipan M (2016) Texture attribute analysis of GPR data for archaeological prospection. Pure Appl Geophys. https://doi.org/10.1007/s00024-016-1355-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge G. Cassiani, G. P. Deidda and G. Vignoli for their support for geophysical acquisitions, G. Leucci for the support for 3D data visualization and also thank for the kind cooperation the Soprintendenza Archeologia Belle Arti e Paesaggio of Cagliari, S. Berto, E. Bridi, F. Carraro, S. Dilaria, L. Zamparo for the archaeological part, G. Martorana and the anonymous reviewers for their helpful comments that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Jacopo Bonetto contributed to Sects. 2 and 3; Alessandro Mazzariol worked on the description of the Phoenician and Punic tombs in Sects. 3.1 and 3.2 and worked on the graphic details; Rita Deiana developed the geophysical approach and performed the geophysical measurements and the interpretation of the data; all authors contributed to the drafting of the manuscript.

Corresponding author

Correspondence to Rita Deiana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deiana, R., Bonetto, J. & Mazzariol, A. Integrated Electrical Resistivity Tomography and Ground Penetrating Radar Measurements Applied to Tomb Detection. Surv Geophys 39, 1081–1105 (2018). https://doi.org/10.1007/s10712-018-9495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9495-x

Keywords

Navigation