Skip to main content

Advertisement

Log in

Motional Induction by Tsunamis and Ocean Tides: 10 Years of Progress

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Motional induction is the process by which the motion of conductive seawater in the ambient geomagnetic main field generates electromagnetic (EM) variations, which are observable on land, at the seafloor, and sometimes at satellite altitudes. Recent years have seen notable progress in our understanding of motional induction associated with tsunamis and with ocean tides. New studies of tsunami motional induction were triggered by the 2004 Sumatra earthquake tsunami and further promoted by subsequent events, such as the 2010 Chile earthquake and the 2011 Tohoku earthquake. These events yielded observations of tsunami-generated EM variations from land and seafloor stations. Studies of magnetic fields generated by ocean tides attracted interest when the Swarm satellite constellation enabled researchers to monitor tide-generated magnetic variations from low Earth orbit. Both avenues of research benefited from the advent of sophisticated seafloor instruments, by which we may exploit motional induction for novel applications. For example, seafloor EM measurements can serve as detectors of vector properties of tsunamis, and seafloor EM data related to ocean tides have proved useful for sounding Earth’s deep interior. This paper reviews and discusses the progress made in motional induction studies associated with tsunamis and ocean tides during the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adams AJ (1881) Earth currents. Part 2. J Soc Telegraph Eng Electr 10(35):34–44

  • Andres M, Jan S, Sanford T et al (2015) Mean structure and variability of the Kuroshio from northeastern Taiwan to southwestern Japan. Oceanography 28:84–95. doi:10.5670/oceanog.2015.84

    Article  Google Scholar 

  • Baba K, Utada H, Goto T et al (2010) Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Phys Earth Planet Inter 183:44–62. doi:10.1016/j.pepi.2010.09.010

    Article  Google Scholar 

  • Bernard EN, Meinig C (2011) History and future of deep-ocean tsunami measurements. In: OCEANS’11 MTS/IEEE KONA. IEEE, pp 1–7

  • Chapman S, Miller J (1940) The statistical determination of lunar daily variations in geomagnetic and meteorological elements. Geophys Suppl Mon Not R Astron Soc 4:649–669

    Article  Google Scholar 

  • Chave AD (1983) On the theory of electromagnetic induction in the earth by ocean currents. J Geophys Res 88:3531–3542

    Article  Google Scholar 

  • Chave AD (1984) On the electromagnetic fields induced by oceanic internal waves. J Geophys Res 89:10519. doi:10.1029/JC089iC06p10519

    Article  Google Scholar 

  • Chave AD, Luther DS (1990) Low-frequency, motionally induced electromagnetic fields in the ocean 1. Theory. J Geophys Res 95:7185–7200

    Article  Google Scholar 

  • Constable S (2013) Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding. Geophys Prospect 61:505–532. doi:10.1111/j.1365-2478.2012.01117.x

    Article  Google Scholar 

  • Cox C (1980) Electromagnetic induction in the oceans and inferences on the constitution of the earth. Geophys Surv 4:137–156. doi:10.1007/BF01452963

    Article  Google Scholar 

  • Cox C, Kroll N, Pistek P, Watson K (1978) Electromagnetic fluctuations induced by wind waves on the deep-sea floor. J Geophys Res 83:431. doi:10.1029/JC083iC01p00431

    Article  Google Scholar 

  • Dawson TW, Weaver JT (1979) Three-dimensional induction in a non-uniform thin sheet at the surface of a uniformly conducting earth. Geophys J Int 59:445–462. doi:10.1111/j.1365-246X.1979.tb02566.x

    Article  Google Scholar 

  • Dostal J, Martinec Z, Thomas M et al (2012) The modelling of the toroidal magnetic field induced by tidal ocean circulation. Geophys J Int 189:782–798. doi:10.1111/j.1365-246X.2012.05407.x

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19:183–204. doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

    Article  Google Scholar 

  • Egedal J (1937) On the lunar-diurnal variation in the earth-currents. Terr Magn Atmos Electr 42:179–181. doi:10.1029/TE042i002p00179

    Article  Google Scholar 

  • Egedal J (1948) The lunar-diurnal variation in the earth-currents at the Italian Polar Year Station at Mogadiscio, Somaliland. Geofis Pura e Appl 11:1–7. doi:10.1007/BF01980420

    Article  Google Scholar 

  • Faraday M (1832) The bakerian lecture: experimental researches in electricity. Second series. Philos Trans R Soc Lond 122:163–194

    Article  Google Scholar 

  • Filloux JH (1967) An ocean bottom, D component magnetometer. Geophysics 32:978–987. doi:10.1190/1.1439910

    Article  Google Scholar 

  • Filloux JH (1973) Techniques and instrumentation for study of natural electromagnetic induction at sea. Phys Earth Planet Inter 7:323–338. doi:10.1016/0031-9201(73)90058-7

    Article  Google Scholar 

  • Filloux J (1987) Instrumentation and experimental methods for oceanic studies. Geomagnetism 1:143–248

    Google Scholar 

  • Flosadóttir ÁH, Larsen JC, Smith JT (1997) Motional induction in North Atlantic circulation models. J Geophys Res Oceans 102:10353–10372. doi:10.1029/96JC03603

    Article  Google Scholar 

  • Fraser DC (1966) The magnetic fields of ocean waves. Geophys J Int 11(5):507–517

  • Frick P, Baliunas SL, Galyagin D et al (1997) Wavelet analysis of stellar chromospheric activity variations. Astrophys J 483:426–434. doi:10.1086/304206

    Article  Google Scholar 

  • Fujii I, Chave AD (1999) Motional induction effect on the planetary-scale geoelectric potential in the eastern North Pacific. J Geophys Res Oceans 104:1343–1359. doi:10.1029/1998JC900041

    Article  Google Scholar 

  • Fujii Y, Satake K (2008) Tsunami sources of the November 2006 and January 2007 great Kuril earthquakes. Bull Seismol Soc Am 98:1559–1571. doi:10.1785/0120070221

    Article  Google Scholar 

  • Grayver AV, Kuvshinov AV (2016) Exploring equivalence domain in nonlinear inverse problems using Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling. Geophys J Int 205:971–987. doi:10.1093/gji/ggw063

    Article  Google Scholar 

  • Grayver AV, Schnepf NR, Kuvshinov AV, Sabaka TJ, Manoj C, Olsen N (2016) Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary. Sci Adv 2(9):e1600798

  • Hamano Y, Sugioka H, Tada N et al (2014a) Detection of micro-tsunamis by using Vector Tsunameter. 2014 SGEPSS Fall Meet R003-4

  • Hamano Y, Sugioka H, Toh H (2014b) Long-term deployment of Wave Glider for a real-time tsunami monitoring system using the Vector Tsunameter. Japan Geoscience Union Meet 2014 HDS27-08

  • Harvey RR, Larsen JC, Montaner R (1977) Electric field recording of tidal currents in the Strait of Magellan. J Geophys Res 82:3472–3476. doi:10.1029/JC082i024p03472

    Article  Google Scholar 

  • Ichihara H, Hamano Y, Baba K, Kasaya T (2013) Tsunami source of the 2011 Tohoku earthquake detected by an ocean-bottom magnetometer. Earth Planet Sci Lett 382:117–124

  • Irrgang C, Saynisch J, Thomas M (2016a) Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model. Ocean Sci 12:129–136. doi:10.5194/os-12-129-2016

    Article  Google Scholar 

  • Irrgang C, Saynisch J, Thomas M (2016b) Ensemble simulations of the magnetic field induced by global ocean circulation: estimating the uncertainty. J Geophys Res Oceans 121:1866–1880. doi:10.1002/2016JC011633

    Article  Google Scholar 

  • JAMSTEC (2014) Real-time ocean bottom tsunami monitoring system using vector TsunaMeter successfully completes trial observation. In: Press release 4 April 2014. http://www.jamstec.go.jp/e/about/press_release/20140404/. Accessed 8 May 2017

  • Junge A (1988) The telluric field in northern Germany induced by tidal motion in the North Sea. Geophys J Int 95:523–533. doi:10.1111/j.1365-246X.1988.tb06701.x

    Article  Google Scholar 

  • Kasaya T, Goto T (2009) A small ocean bottom electromagnetometer and ocean bottom electrometer system with an arm-folding mechanism (technical report). Explor Geophys 40:41. doi:10.1071/EG08118

    Article  Google Scholar 

  • Katsura T, Yoshino T (2015) Heterogeneity of electrical conductivity in the oceanic upper mantle. In: Khan A, Deschamps F (eds) The Earth’s heterogeneous mantle. Springer International Publishing, Cham, pp 173–204

  • Kawakatsu H, Baba K, Takeo A, Isse T, Shiobara H, Utada H (2013) In-situ characterization of the lithosphere/asthenosphere system of the ‘normal oceanic mantle’ via ocean bottom geophysical observations: first results of the NOMan project. In AGU fall meeting abstracts

  • Kawashima I, Toh H (2016) Tsunami-generated magnetic fields may constrain focal mechanisms of earthquakes. Sci Rep 6:28603. doi:10.1038/srep28603

    Article  Google Scholar 

  • Kherani EA, Rolland L, Lognonné P et al (2016) Traveling ionospheric disturbances propagating ahead of the Tohoku-Oki tsunami: a case study. Geophys J Int 204:1148–1158. doi:10.1093/gji/ggv500

    Article  Google Scholar 

  • Klausner V, Mendes O, Domingues MO et al (2014) Advantage of wavelet technique to highlight the observed geomagnetic perturbations linked to the Chilean tsunami (2010). J Geophys Res Sp Phys 119:3077–3093. doi:10.1002/2013JA019398

    Article  Google Scholar 

  • Klausner V, Kherani EA, Muella MTAH (2016) Near- and far-field tsunamigenic effects on the Z component of the geomagnetic field during the Japanese event, 2011. J Geophys Res Sp Phys 121:1772–1779. doi:10.1002/2015JA022173

    Article  Google Scholar 

  • Kuvshinov AV (2008) 3-D global induction in the oceans and solid Earth: recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric and oceanic origin. Surv Geophys 29:139–186. doi:10.1007/s10712-008-9045-z

    Article  Google Scholar 

  • Kuvshinov A, Olsen N (2005) 3-D modelling of the magnetic fields due to ocean tidal flow. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP. Springer, Berlin, pp 359–365

  • Kuvshinov A, Olsen N (2006) A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data. Geophys Res Lett. doi:10.1029/2006GL027083

    Google Scholar 

  • Kuvshinov AV, Avdeev DB, Pankratov OV et al (2002) Modelling electromagnetic fields in a 3D spherical earth using a fast integral equation approach. Methods Geochem Geophys 35:43–54. doi:10.1016/S0076-6895(02)80085-3

    Article  Google Scholar 

  • Kuvshinov A, Junge A, Utada H (2006) 3-D modelling the electric field due to ocean tidal flow and comparison with observations. Geophys Res Lett 33:L06314. doi:10.1029/2005GL025043

    Google Scholar 

  • Larsen JC (1968) Electric and magnetic fields induced by deep sea tides. Geophys J Int 16:47–70. doi:10.1111/j.1365-246X.1968.tb07135.x

    Article  Google Scholar 

  • Larsen J (1971) The electromagnetic field of long and intermediate water waves. J Mar Res 29:28–45

    Google Scholar 

  • Larsen JC (1992) Transport and heat flux of the Florida current at 27 degrees N derived from cross-stream voltages and profiling data: theory and observations. Philos Trans Royal Society London A: Math Phys Eng Sci 338(1650):169–236

  • Larsen J, Cox C (1966) Lunar and solar daily variation in the magnetotelluric field beneath the ocean. J Geophys Res 71:4441–4445. doi:10.1029/JZ071i018p04441

    Article  Google Scholar 

  • Larsen J, Sanford T (1985) Florida current volume transports from voltage measurements. Science 227:302–304

    Article  Google Scholar 

  • Lilley FEM, Filloux JH, Mulhearn PJ, Ferguson IJ (1993) Magnetic signals from an ocean eddy. J Geomagn Geoelectr 45:403–422. doi:10.5636/jgg.45.403

    Article  Google Scholar 

  • Lilley FEM, Hitchman AP, Milligan PR et al (2004) Sea-surface observations of the magnetic signals of ocean swells. Geophys J Int 159:565–572. doi:10.1111/j.1365-246X.2004.02420.x

    Article  Google Scholar 

  • Lizarralde D, Chave A, Hirth G, Schultz A (1995) Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J Geophys Res Solid Earth 100:17837–17854. doi:10.1029/95JB01244

    Article  Google Scholar 

  • Longuet-Higgins MS (1949) The electrical and magnetic effects of tidal streams. Geophys J Int 5:285–307. doi:10.1111/j.1365-246X.1949.tb02945.x

    Article  Google Scholar 

  • Longuet-Higgins MS, Stern ME, Stommel HM (1954) The electrical field induced by ocean currents and waves, with applications to the method of towed electrodes. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge

    Book  Google Scholar 

  • Lowes FJ (1966) Mean-square values on sphere of spherical harmonic vector fields. J Geophys Res 71:2179. doi:10.1029/JZ071i008p02179

    Article  Google Scholar 

  • Luther DS, Chave AD, Filloux JH (1987) BEMPEX: a study of barotropic ocean currents and lithospheric electrical conductivity. EOS Trans Am Geophys Union 68:618. doi:10.1029/EO068i027p00618

    Article  Google Scholar 

  • Luther DS, Filloux JH, Chave AD (1991) Low-frequency, motionally induced electromagnetic fields in the ocean: 2. Electric field and Eulerian current comparison. J Geophys Res 96:12797. doi:10.1029/91JC00884

    Article  Google Scholar 

  • Maclure KC, Hafer RA, Weaver JT (1964) Magnetic variations produced by ocean swell. Nature 204:1290–1291. doi:10.1038/2041290a0

    Article  Google Scholar 

  • Maeda T, Furumura T, Sakai S, Shinohara M (2011) Significant tsunami observed at ocean-bottom pressure gauges during the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Sp 63:803–808. doi:10.5047/eps.2011.06.005

    Article  Google Scholar 

  • Malin SRC, Chapman S (1970) The determination of lunar daily geophysical variations by the Chapman–Miller method. Geophys J Int 19:15–35. doi:10.1111/j.1365-246X.1970.tb06738.x

    Article  Google Scholar 

  • Malkus W, Stern M (1952) Determination of ocean transports and velocities by electromagnetic effects. J Mar Res 11:97–105

    Google Scholar 

  • Manoj C, Kuvshinov A, Maus S, Lühr H (2006) Ocean circulation generated magnetic signals. Earth Planets Sp 58:429–437. doi:10.1186/BF03351939

    Article  Google Scholar 

  • Manoj C, Kuvshinov A, Neetu S, Harinarayana T (2010) Can undersea voltage measurements detect tsunamis? Earth Planets Sp 62:353–358. doi:10.5047/eps.2009.10.001

    Article  Google Scholar 

  • Manoj C, Maus S, Chulliat A (2011) Observation of magnetic fields generated by tsunamis. EOS Trans Am Geophys Union 92:13. doi:10.1029/2011EO020002

    Article  Google Scholar 

  • Marine Technology (2014) Realtime tsunami monitoring in Japan. http://magazines.marinelink.com/tags/technology/tsunami-detection-technology. Accessed 8 May 2017

  • Maus S, Kuvshinov A (2004) Ocean tidal signals in observatory and satellite magnetic measurements. Geophys Res Lett 31:L15313. doi:10.1029/2004GL020090

    Article  Google Scholar 

  • McKirdy DM, Weaver JT, Dawson TW (1985) Induction in a thin sheet of variable conductance at the surface of a stratified earth? II. Three-dimensional theory. Geophys J Int 80:177–194. doi:10.1111/j.1365-246X.1985.tb05084.x

    Article  Google Scholar 

  • Minami T, Toh H (2013) Two-dimensional simulations of the tsunami dynamo effect using the finite element method. Geophys Res Lett 40:4560–4564

    Article  Google Scholar 

  • Minami T, Toh H, Tyler RH (2015) Properties of electromagnetic fields generated by tsunami first arrivals: classification based on the ocean depth. Geophys Res Lett 42:2171–2178. doi:10.1002/2015GL063055

    Article  Google Scholar 

  • Nolasco R, Soares A, Dias JM et al (2006) Motional induction voltage measurements in estuarine environments: the Ria de Aveiro Lagoon (Portugal). Geophys J Int 166:126–134. doi:10.1111/j.1365-246X.2006.02936.x

    Article  Google Scholar 

  • Ochadlick AR (1989) Measurements of the magnetic fluctuations associated with ocean swell compared with Weaver’s Theory. J Geophys Res 94:16237. doi:10.1029/JC094iC11p16237

    Article  Google Scholar 

  • Olsen N, Hulot G, Lesur V et al (2015) The Swarm initial field model for the 2014 geomagnetic field. Geophys Res Lett 42:1092–1098. doi:10.1002/2014GL062659

    Article  Google Scholar 

  • Ozima M, Mori T, Takayama H (1989) Observation of earth-potential using telegraphic facilities and analysis with BAYTAP-G. J Geomagn Geoelectr 41:945–962. doi:10.5636/jgg.41.945

    Article  Google Scholar 

  • Palshin NA (1996) Oceanic electromagnetic studies: a review. Surv Geophys 17:455–491. doi:10.1007/BF01901641

    Article  Google Scholar 

  • Petersen RA, Poehls KA (1982) Model spectrum of magnetic induction caused by ambient internal waves. J Geophys Res 87:433. doi:10.1029/JC087iC01p00433

    Article  Google Scholar 

  • Podney W (1975) Electromagnetic fields generated by ocean waves. J Geophys Res 80:2977–2990. doi:10.1029/JC080i021p02977

    Article  Google Scholar 

  • Podney W, Sager R (1979) Measurement of fluctuating magnetic gradients originating from oceanic internal waves. Science 205(4413):1381–1382

  • Price A (1949) The induction of electric currents in non-uniform thin sheets and shells. Q J Mech Appl Math 2:283–310

    Article  Google Scholar 

  • Rooney WJ (1938) Lunar diurnal variation in Earth-currents at Huancayo and Tucson. J Geophys Res 43:107. doi:10.1029/TE043i002p00107

    Article  Google Scholar 

  • Sabaka TJ, Olsen N, Tyler RH, Kuvshinov A (2015) CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Orsted, SAC-C and observatory data. Geophys J Int 200:1596–1626. doi:10.1093/gji/ggu493

    Article  Google Scholar 

  • Sabaka TJ, Tyler RH, Olsen N (2016) Extracting ocean-generated tidal magnetic signals from Swarm data through satellite gradiometry. Geophys Res Lett 43:3237–3245. doi:10.1002/2016GL068180

    Article  Google Scholar 

  • Sanford TB (1971) Motionally induced electric and magnetic fields in the sea. J Geophys Res 76:3476–3492. doi:10.1029/JC076i015p03476

    Article  Google Scholar 

  • Sanford TB, Drever RG, Dunlap JH (1978) A velocity profiler based on the principles of geomagnetic induction. Deep Sea Res 25:183–210. doi:10.1016/0146-6291(78)90006-1

    Article  Google Scholar 

  • Sanford TB, Drever RG, Dunlap JH, D’Asaro EA (1982) Design, operation and performance of an expendable temperature and velocity profiler (XTVP) (No. APL-UW-8110). Washington univ seattle applied physics lab

  • Sanford TB, Driver RG, Dunlap JH et al (1985) An acoustic Doppler and electromagnetic velocity profiler. J Atmos Ocean Technol 2:110–124. doi:10.1175/1520-0426(1985)002<0110:AADAEV>2.0.CO;2

    Article  Google Scholar 

  • Sanford TB, Dunlap JH, Carlson JA et al (2005) Autonomous velocity and density profiler: EM-APEX. In: Proceedings of the IEEE/OES eighth working conference on current measurement technology, 2005. IEEE, pp 152–156

  • Sanford TB, Price JF, Girton JB, Webb DC (2007) Highly resolved observations and simulations of the ocean response to a hurricane. Geophys Res Lett. doi:10.1029/2007GL029679

    Google Scholar 

  • Sanford TB, Price JF, Girton JB et al (2011) Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats*. J Phys Oceanogr 41:1041–1056. doi:10.1175/2010JPO4313.1

    Article  Google Scholar 

  • Sarafian E, Evans RL, Collins JA et al (2015) The electrical structure of the central Pacific upper mantle constrained by the NoMelt experiment. Geochem Geophys Geosyst 16:1115–1132. doi:10.1002/2014GC005709

    Article  Google Scholar 

  • Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am 103:1473–1492. doi:10.1785/0120120122

    Article  Google Scholar 

  • Saynisch J, Petereit J, Irrgang C et al (2016) Impact of climate variability on the tidal oceanic magnetic signal-A model-based sensitivity study. J Geophys Res Oceans 121:5931–5941. doi:10.1002/2016JC012027

    Article  Google Scholar 

  • Schnepf NR, Manoj C, Kuvshinov A et al (2014) Tidal signals in ocean-bottom magnetic measurements of the northwestern Pacific: observation versus prediction. Geophys J Int 198:1096–1110. doi:10.1093/gji/ggu190

    Article  Google Scholar 

  • Schnepf NR, Kuvshinov A, Sabaka T (2015) Can we probe the conductivity of the lithosphere and upper mantle using satellite tidal magnetic signals? Geophys Res Lett 42:3233–3239. doi:10.1002/2015GL063540

    Article  Google Scholar 

  • Schnepf NR, Manoj C, An C et al (2016) Time-frequency characteristics of tsunami magnetic signals from four Pacific Ocean events. Pure appl Geophys 173:3935–3953. doi:10.1007/s00024-016-1345-5

    Article  Google Scholar 

  • Segawa J, Toh H (1992) Detecting fluid circulation by electric field variations at the Nankai Trough. Earth Planet Sci Lett 109:469–476. doi:10.1016/0012-821X(92)90107-7

    Article  Google Scholar 

  • Shimizu H, Utada H (2015) Motional magnetotellurics by long oceanic waves. Geophys J Int 201:390–405. doi:10.1093/gji/ggv030

    Article  Google Scholar 

  • Shimizu H, Koyama T, Baba K et al (2010) Revised 1-D mantle electrical conductivity structure beneath the north Pacific. Geophys J Int 180:1030–1048. doi:10.1111/j.1365-246X.2009.04466.x

    Article  Google Scholar 

  • Singer BS (1995) Method for solution of Maxwell’s equations in non-uniform media. Geophys J Int 120:590–598. doi:10.1111/j.1365-246X.1995.tb01841.x

    Article  Google Scholar 

  • Sladen A, Hébert H (2008) On the use of satellite altimetry to infer the earthquake rupture characteristics: application to the 2004 Sumatra event. Geophys J Int 172:707–714. doi:10.1111/j.1365-246X.2007.03669.x

    Article  Google Scholar 

  • Smith JT (1996a) Conservative modeling of 3-D electromagnetic fields, Part I: properties and error analysis. Geophysics 61:1308–1318. doi:10.1190/1.1444054

    Article  Google Scholar 

  • Smith JT (1996b) Conservative modeling of 3-D electromagnetic fields, Part II: biconjugate gradient solution and an accelerator. Geophysics 61:1319–1324. doi:10.1190/1.1444055

    Article  Google Scholar 

  • Stephenson D, Bryan K (1992) Large-scale electric and magnetic fields generated by the oceans. J Geophys Res 97:15467. doi:10.1029/92JC01400

    Article  Google Scholar 

  • Stommel H (1948) The theory of the electric field induced in deep ocean currents. J Mar Res 7:386–392

    Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387. doi:10.1175/JCLI3689.1

    Article  Google Scholar 

  • Suetsugu D, Shiobara H, Sugioka H et al (2012) TIARES project—tomographic investigation by seafloor array experiment for the society hotspot. Earth Planets Sp 64:i–iv. doi:10.5047/eps.2011.11.002

    Article  Google Scholar 

  • Sugioka H, Hamano Y, Baba K et al (2014) Tsunami: ocean dynamo generator. Sci Rep 4:3596. doi:10.1038/srep03596

    Article  Google Scholar 

  • Szuts ZB (2012) Using motionally-induced electric signals to indirectly measure ocean velocity: instrumental and theoretical developments. Prog Oceanogr 96:108–127. doi:10.1016/j.pocean.2011.11.014

    Article  Google Scholar 

  • Taguchi E, Stammer D, Zahel W (2014) Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model. J Geophys Res Oceans 119:4573–4592. doi:10.1002/2013JC009766

    Article  Google Scholar 

  • Tatehata H, Ichihara H, Hamano Y (2015) Tsunami-induced magnetic fields detected at Chichijima Island before the arrival of the 2011 Tohoku earthquake tsunami. Earth, Planets Sp 67:185. doi:10.1186/s40623-015-0347-3

    Article  Google Scholar 

  • Terker SR, Sanford TB, Dunlap JH, Girton JB (2013) The EM-POGO: a simple, absolute velocity profiler. Deep Sea Res Part II Top Stud Oceanogr 85:220–227. doi:10.1016/j.dsr2.2012.07.026

    Article  Google Scholar 

  • Thomson DJ, Lanzerotti LJ, Maclennan CG, Medford LV (1995) Ocean cable measurements of the tsunami signal from the 1992 Cape Mendocino earthquake. Pure Appl Geophys PAGEOPH 144:427–440. doi:10.1007/BF00874376

    Article  Google Scholar 

  • Toh H, Goto T, Hamano Y (1998) A new seafloor electromagnetic station with an Overhauser magnetometer, a magnetotelluric variograph and an acoustic telemetry modem. Earth Planets Sp 50:895–903. doi:10.1186/BF03352185

    Article  Google Scholar 

  • Toh H, Hamano Y, Ichiki M (2006) Long-term seafloor geomagnetic station in the northwest Pacific: a possible candidate for a seafloor geomagnetic observatory. Earth Planets Sp 58:697–705. doi:10.1186/BF03351970

    Article  Google Scholar 

  • Toh H, Satake K, Hamano Y et al (2011) Tsunami signals from the 2006 and 2007 Kuril earthquakes detected at a seafloor geomagnetic observatory. J Geophys Res 116:B02104. doi:10.1029/2010JB007873

    Article  Google Scholar 

  • Tsugawa T, Saito A, Otsuka Y et al (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Sp 63:875–879. doi:10.5047/eps.2011.06.035

    Article  Google Scholar 

  • Tyler RH (2005) A simple formula for estimating the magnetic fields generated by tsunami flow. Geophys Res Lett 32:L09608. doi:10.1029/2005GL022429

    Article  Google Scholar 

  • Tyler R (2015) Electromagnetic coupling of ocean flow with the earth system. Terr Atmos Ocean Sci 26:41–52. doi:10.3319/TAO.2014.08.19.04(GRT)

    Article  Google Scholar 

  • Tyler RH, Mysak LA (1995) Motionally-induced electromagnetic fields generated by idealized ocean currents. Geophys Astrophys Fluid Dyn 80:167–204. doi:10.1080/03091929508228954

    Article  Google Scholar 

  • Tyler RH, Mysak LA, Oberhuber JM (1997) Electromagnetic fields generated by a three dimensional global ocean circulation. J Geophys Res Oceans 102:5531–5551. doi:10.1029/96JC03545

    Article  Google Scholar 

  • Tyler RH, Maus S, Lühr H (2003) Satellite observations of magnetic fields due to ocean tidal flow. Science 299(5604):239–241. doi:10.1126/science.1078074

    Article  Google Scholar 

  • Utada H, Shimizu H, Ogawa T et al (2011) Geomagnetic field changes in response to the 2011 off the Pacific Coast of Tohoku Earthquake and Tsunami. Earth Planet Sci Lett 311:11–27. doi:10.1016/j.epsl.2011.09.036

    Article  Google Scholar 

  • Vivier F, Maier-Reimer E, Tyler RH (2004) Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: can geomagnetic measurements be used to monitor the flow? Geophys Res Lett. doi:10.1029/2004GL019804

    Google Scholar 

  • Von Arx WS (1950) Electromagnetic method for measuring the velocities of ocean currents from a ship under way. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge

    Book  Google Scholar 

  • Wang B, Guo X, Liu H, Gong C (2015). On the magnetic anomaly at Easter Island during the 2010 Chile tsunami. Theor Appl Mech Lett 5(5):187–190

  • Weaver JT (1965) Magnetic variations associated with ocean waves and swell. J Geophys Res 70:1921–1929. doi:10.1029/JZ070i008p01921

    Article  Google Scholar 

  • White A (1979) A sea floor magnetometer for the continental shelf. Mar Geophys Res 4:105–114. doi:10.1007/BF00286148

    Article  Google Scholar 

  • Wollaston C (1881) Discussion of the paper by AJS Adams “earth Currents” (2nd paper). J Soc Telegr Eng Electr 10:50–51

    Google Scholar 

  • Young FB, Gerrard H, Jevons W (1920) On electrical disturbances due to tides and waves. Philos Mag Ser 6(40):149–159. doi:10.1080/14786440708636105

    Article  Google Scholar 

  • Zhang L, Baba K, Liang P et al (2014a) The 2011 Tohoku Tsunami observed by an array of ocean bottom electromagnetometers. Geophys Res Lett 41:4937–4944. doi:10.1002/2014GL060850

    Article  Google Scholar 

  • Zhang L, Utada H, Shimizu H et al (2014b) Three-dimensional simulation of the electromagnetic fields induced by the 2011 Tohoku tsunami. J Geophys Res Solid Earth 119:150–168. doi:10.1002/2013JB010264

    Article  Google Scholar 

Download references

Acknowledgements

I thank the Working Group for inviting me as a reviewer at the EM Induction Workshop 2016 in Chiang Mai, Thailand. Hisashi Utada, Hisayoshi Shimizu, and Hiroaki Toh provided helpful comments on this review through seminars and personal communications, which made this review comprehensive. Terence J. Sabaka and Robert H. Tyler provided detailed responses to my questions about the CM5 model. I am grateful for the input of Alexander V. Grayver and Neesha R. Schnepf on recent advances. This review was produced while working at the Earthquake Research Institute, the University of Tokyo, as a Japan Society for the Promotion of Science (JSPS) postdoctoral fellow. Production of this review was supported by Grant-in-Aid for Scientific Research No. 26282101 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuto Minami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minami, T. Motional Induction by Tsunamis and Ocean Tides: 10 Years of Progress. Surv Geophys 38, 1097–1132 (2017). https://doi.org/10.1007/s10712-017-9417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-017-9417-3

Keywords

Navigation