Skip to main content

Advertisement

Log in

Convective Self-Aggregation in Numerical Simulations: A Review

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is “self-aggregation,” in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative–convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Video S1 and Video S2 from Wing et al. (2016) can be found at http://dx.doi.org/10.1175/JAS-D-15-0380.1.

References

  • Abbot D (2014) Resolved snowball Earth clouds. J Climate 27:4391–4402. doi:10.1175/JCLI-D-13-00738.1

    Google Scholar 

  • Arnold NP, Randall DA (2015) Global-scale convective aggregation: implications for the Madden-Julian oscillation. J Adv Model Earth Syst. doi:10.1002/2015MS000498

    Google Scholar 

  • Becker T, Stevens B (2014) Climate and climate sensitivity to changing CO2 on an idealized land planet. J Adv Model Earth Syst 6:1205–1223. doi:10.1002/2014MS000369

    Article  Google Scholar 

  • Bender MA, Ginis I, Kurihara YY (1993) Numerical simulations of tropical cyclone-ocean interaction with a high resolution coupled model. J Geophys Res 98:23245–23263

    Article  Google Scholar 

  • Beucler T, Cronin T (2016) Moisture-radiative cooling instability. J Adv Model Earth Syst. doi:10.1002/2016MS000763

    Google Scholar 

  • Beucler T, Emanuel KA (2016) Instabilities of radiative convective equilibrium with an interactive surface. In: Preprints 32nd Conference on hurricanes and tropical meteorology, San Juan, PR. American Meteorological Society, Tucson, AZ

  • Bony S, Stevens B, Coppin D, Becker T, Reed KA, Voigt A, Medeiros B (2016) Thermodynamic control of anvil cloud amount. Proc Nat Acad Sci 113(32):8927–8932. doi:10.1073/pnas.161472113

    Article  Google Scholar 

  • Boos WR, Fedorov AV, Muir L (2015) Convective self-aggregation and tropical cyclogenesis under the hypohydrostatic rescaling. J Atmos Sci. doi:10.1175/JAS-D-15-0049.1

    Google Scholar 

  • Bretherton CS, Khairoutdinov MF (2015) Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an aquaplanet. J Adv Model Earth Syst 7(4):1765–1787. doi:10.1002/2015MS000499

    Article  Google Scholar 

  • Bretherton CS, Peters ME, Back LE (2004) Relationships between water vapor path and precipitation over the tropical oceans. J Climate 17:1517–1528

    Article  Google Scholar 

  • Bretherton CS, Blossey PN, Khairoutdinov M (2005) An energy-balance analysis of deep convective self-aggregation above uniform SST. J Atmos Sci 62:4237–4292. doi:10.1175/JAS3614.1

    Article  Google Scholar 

  • Coppin D, Bony S (2015) Physical mechanisms controlling the initiation of convective self-aggregation in a general circulation model. J Adv Model Earth Syst 7(4):2060–2078. doi:10.1002/2015MS000571

    Article  Google Scholar 

  • Craig GC, Mack JM (2013) A coarsening model for self-organization of tropical convection. J Geophys Res Atmos 118:8761–8769. doi:10.1002/jgrd.50674

    Article  Google Scholar 

  • Daleu CL, Plant RS, Woolnough SJ, Sessions S, Herman MJ, Sobel A, Wang S, Kim D, Cheng A, Bellon G, Peyrille P, Ferry F, Siebesma P, van Ulft L (2015) Intercomparison of methods of coupling between convection and large-scale circulation: I. Comparison over uniform surface conditions. J Adv Model Earth Syst. doi:10.1002/2015MS000468

  • Davis CA (2015) The formation of moist vortices and tropical cyclones in idealized simulations. J Atmos Sci 72:3499–3516. doi:10.1175/JAS-D-15-0027.1

    Article  Google Scholar 

  • Emanuel K, Wing AA, Vincent EM (2014) Radiative–convective instability. J Adv Model Earth Syst 6:75–90. doi:10.1002/2013MS000270

    Article  Google Scholar 

  • Emanuel KA (2001) The contribution of tropical cyclones to the oceans’ meridional heat transport. J Geophys Res 106:14771–714782

    Article  Google Scholar 

  • Frappier AB, Sahagian D, Carpenter SJ, Gonzlez LA, Frappier BR (2007) Stalagmite stable isotope record of recent tropical cyclone events. Geology 35:111–114

    Article  Google Scholar 

  • Grabowski W, Moncrieff M (2001) Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Q J R Meteorol Soc 127:445–468

    Article  Google Scholar 

  • Grabowski W, Moncrieff M (2002) Large-scale organization of tropical convection in two-dimensional explicit numerical simulations: effects of interactive radiation. Q J R Meteorl Soc 128:2349–2375. doi:10.1256/qj.01.104

    Article  Google Scholar 

  • Grabowski WW, Moncrieff MW (2004) Moisture-convection feedback in the tropics. Q J R Meteorol Soc 130:3081–3104. doi:10.1256/qj.03.135

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Climate 19:5686–5699. doi:10.1175/JCLI3990.1

    Article  Google Scholar 

  • Held IM, Zhao M (2008) Horizontally homogeneous rotating radiative-convective equilibrium at GCM resolution. J Atmos Sci 65:2003–2013. doi:10.1175/2007JAS2604.1

    Article  Google Scholar 

  • Held IM, Hemler RS, Ramaswamy V (1993) Radiative–convective equilibrium with explicit two-dimensional moist convection. J Atmos Sci 50:3909–3927

    Article  Google Scholar 

  • Held IM, Zhao M, Wyman B (2007) Dynamic radiative–convective equilibria using GCM column physics. J Atmos Sci 64:228–238. doi:10.1175/JAS3825.11

    Article  Google Scholar 

  • Hohenegger C, Stevens B (2016) Coupled radiative convective equilibrium simulations with explicit and parameterized convection. J Adv Model Earth Syst. doi:10.1002/2016MS000666

    Google Scholar 

  • Holloway CE, Neelin JD (2009) Moisture vertical structure, column water vapor, and tropical deep convection. J Atmos Sci 66:1665–1683

    Article  Google Scholar 

  • Holloway CE, Woolnough SJ (2016) The sensitivity of convective aggregation to diabatic processes in idealized radiative–convective equilibrium simulations. J Adv Model Earth Syst 8(1):166–195. doi:10.1002/2015MS000511

    Article  Google Scholar 

  • Holloway CE, Wing AA, Bony S, Muller C, Masunaga H, L’Ecuyer TS, Turner DD, Zuidema P (2017) Observing convective aggregation. Surv Geophys (submitted)

  • Jansen M, Ferrari R (2009) Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys Res Lett 36(L06):604. doi:10.1029/2008GL036796

    Google Scholar 

  • Jansen MF, Ferrari R, Mooring TA (2010) Seasonal versus permanent thermocline warming by tropical cyclones. Geophys Res Lett 37(L03):602. doi:10.1029/2009GL041808

    Google Scholar 

  • Jeevanjee N, Romps DM (2013) Convective self-aggregation, cold pools, and domain size. Geophys Res Lett 40:1–5. doi:10.1002/grl/50204

    Article  Google Scholar 

  • Khairoutdinov MF, Emanuel K (2013) Rotating radiative–convective equilibrium simulated by a cloud-resolving model. J Adv Model Earth Syst. doi:10.1002/2013MS000253

    Google Scholar 

  • Khairoutdinov MF, Emanuel KA (2010) Aggregation of convection and the regulation of tropical climate. In: Preprints. 29th Conference on hurricanes and tropical meteorology. American Meteorological Society, Tucson, AZ

  • Knutson TR, Manabe S (1995) Time-mean response over the tropical pacific to increased CO2 in a coupled ocean-atmosphere model. J Climate 8:2181–2199

    Article  Google Scholar 

  • Lawrence JR, Gedzelman SD (1996) Low stable isotope ratios of tropical cyclone rains. Geophys Res Lett 23:527–530

    Article  Google Scholar 

  • Lin I et al (2003) New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys Res Lett. doi:10.1029/2003GL017,141

    Google Scholar 

  • Manabe S, Strickler RF (1964) Thermal equilibrium of the atmosphere with a convective adjustment. J Atmos Sci 21:361–385

    Article  Google Scholar 

  • Mapes B, Neale R (2011) Parameterizing convective organization to escape the entrainment dilemma. J Adv Model Earth Syst 3(M06):004. doi:10.1029/2011MS000042

    Google Scholar 

  • Mauritsen T, Stevens B (2015) Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat Geosci 8:346–351. doi:10.1038/ngeo2414

    Article  Google Scholar 

  • Merlis TM, Zhou W, Held IM, Zhao M (2016) Surface temperature dependence of tropical cyclone-permitting simulations in a spherical model with uniform thermal forcing. Geophys Res Lett 43:2859–2865. doi:10.1002/2016GL067730

    Article  Google Scholar 

  • Miller DL, Mora CI, Grissino-Mayer HD, Mock CJ, Uhle ME, Sharp Z (2006) Tree-ring isotope records of tropical cyclone activity. Proc Nat Acad Sci 103:14,294–14,297

  • Muller C, Bony S (2015) What favors convective aggregation and why? Geophys Res Lett 42:5626–5643. doi:10.1002/2015GL064260

    Article  Google Scholar 

  • Muller CJ, Held IM (2012) Detailed investigation of the self-aggregation of convection in cloud resovling simulations. J Atmos Sci 69:2551–2565. doi:10.1175/JAS-D-11-0257.1

    Article  Google Scholar 

  • Nilsson J, Emanuel K (1999) Equilibrium atmospheres of a two-column radiative–convective model. Q J R Meteorol Soc 125:2239–2264

    Article  Google Scholar 

  • Nolan DS, Rappin ED, Emanuel KE (2007) Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Q J R Meteorol Soc 133:2085–2107. doi:10.1002/qj.170

    Article  Google Scholar 

  • Popke D, Stevens B, Voigt A (2013) Climate and climate change in a radiative–convective equilibrium version of ECHAM6. J Adv Model Earth Syst 5:1–14. doi:10.1029/2012MS000191

    Article  Google Scholar 

  • Posselt D, van den Heever S, Stephens G (2008) Trimodal cloudiness and tropical stable layers in simulations of radiative–convective equilibrium. Geophys Res Lett 35(L08):802. doi:10.1029/2007GL033029

    Google Scholar 

  • Posselt D, van den Heever S, Stephens G, Igel M (2012) Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. J Climate 25:557–571. doi:10.1175/2011JCLI4167.1

    Article  Google Scholar 

  • Raymond D (2000) The Hadley circulation as a radiative–convective instability. J Atmos Sci 57:1286–1297

    Article  Google Scholar 

  • Reed K, Medeiros B (2016) A reduced complexity framework to bridge the gap between AGCMs and cloud-resolving models. Geophys Res Lett 43:860–866. doi:10.1002/2015GL066713

    Article  Google Scholar 

  • Reed KA, Chavas DR (2015) Uniformly rotating global radiative–convective equilibrium in the community atmosphere model, version 5. J Adv Model Earth Syst. doi:10.1002/2015MS000519

    Google Scholar 

  • Reed KA, Medeiros B, Bacmeister JT, Lauritzen PH (2015) Global radiative–convective equilibrium in the community atmosphere model 5. J Atmos Sci. doi:10.1175/JAS-D-14-0268.1

    Google Scholar 

  • Renno NO, Emanuel KA, Stone PH (1994) Radiative–convective model with an explicit hydrological cycle. Part i: formulation and sensitivity to model parameters. J Geophys Res. 99:14,429–14,441

  • Satoh M, Matsuda Y (2009) Statistics on high-cloud areas and their sensitivities to cloud microphysics using single-cloud experiments. J Atmos Sci 66:2659–2677. doi:10.1175/2009JAS2948.1

    Article  Google Scholar 

  • Satoh M, Aramaki K, Sawada M (2016) Structure of tropical convective systems in aquaplanet experiments: radiative–convective equilibrium versus the Earth-like experiment. SOLA 12:220–224. doi:10.2151/sola.2016-044

    Article  Google Scholar 

  • Sessions SL, Sugaya S, Raymond DJ, Sobel AH (2010) Multiple equilibria in a cloud-resolving model using the weak temperature gradient approximation. J Geophys Res. doi:10.1029/2009JD013376

    Google Scholar 

  • Sessions SL, Herman MJ, Sentic S (2015) Convective response to changes in the thermodynamic environment in idealized weak temperature gradient simulations. J Adv Model Earth Syst 7:712–738. doi:10.1002/2015/MS000446

    Article  Google Scholar 

  • Sessions SL, Sentic S, Herman MJ (2016) The role of radiation in organizing convection in weak temperature gradient simulations. J Adv Model Earth Syst 8:244–271. doi:10.1002/2015MS000587

    Article  Google Scholar 

  • Shi X, Bretherton CS (2014) Large-scale character of an atmosphere in rotating radiative–convective equilibrium. J Adv Model Earth Syst 6:616–629. doi:10.1002/2014MS000342

    Article  Google Scholar 

  • Silvers LG, Stevens B, Mauritsen T, Giorgetta M (2016) Radiative convective equilibrium as a framework for studying the interaction between convection and its large-scale environment. J Adv Model Earth Syst. doi:10.1002/2016MS000629

    Google Scholar 

  • Sobel AH, Bellon G, Bacmeister J (2007) Multiple equilibria in a single-column model of the tropical atmosphere. Geophys Res Lett 34(L22):804. doi:10.1029/2007GL031320

    Google Scholar 

  • Stephens GL, van den Heever S, Pakula L (2008) Radiative–convective feedbacks in idealized states of radiative–convective equilibrium. J Atmos Sci 65:3899–3916. doi:10.1175/2008JAS2524.1

    Article  Google Scholar 

  • Su H, Bretherton CS, Chen SS (2000) Self-aggregation and large-scale control of tropical deep convection: a modeling study. J Atmos Sci 57:1797–1816

    Article  Google Scholar 

  • Tobin I, Bony S, Roca R (2012) Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. J Climate 25:6885–6904

    Article  Google Scholar 

  • Tobin I, Bony S, Holloway CE, Grandpeix JY, Seze G, Coppin D, Woolnough SJ, Roca R (2013) Does convective aggregation need to be represented in cumulus parameterizations? J Adv Model Earth Syst 5:692–703. doi:10.1002/jame.20047

    Article  Google Scholar 

  • Tompkins A, Craig G (1998) Radiative–convective equilibrium in a three-dimensional cloud-ensemble model. Q J R Meteorol Soc 124:2073–2097

    Google Scholar 

  • Tompkins AM (2001) Organization of tropical convection in low vertical wind shears: the role of water vapor. J Atmos Sci 58:529–545

    Article  Google Scholar 

  • Wing AA (2014) Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. PhD thesis, MIT, Cambridge, 146 pp

  • Wing AA, Cronin TW (2016) Self-aggregation of convection in long channel geometry. Q J R Meteorol Soc 142:1–15. doi:10.1002/qj.2628

    Article  Google Scholar 

  • Wing AA, Emanuel KA (2014) Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J Adv Model Earth Syst 6:59–74. doi:10.1002/2013MS000269

    Article  Google Scholar 

  • Wing AA, Camargo SJ, Sobel AH (2016) Role of radiative–convective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations. J Atmos Sci 73:2633–2642. doi:10.1175/JAS-D-15-0380.1

    Article  Google Scholar 

  • Zhou W, Held IM, Garner ST (2014) Parameter study of tropical cyclones in rotating radiative–convective equilibrium with column physics and resolution of a 25 km GCM. J Atmos Sci 71:1058–1068. doi:10.1175/JAS-D-13-0190.1

    Article  Google Scholar 

  • Zhou W, Held I, Garner S (2017) Tropical cyclones in rotating radiative–convective equilibrium with coupled SST. J Atmos Sci. doi:10.1175/JAS-D-16-0195.1

    Google Scholar 

Download references

Acknowledgements

This paper arises from the International Space Science Institute (ISSI) workshop on “Shallow clouds and water vapor, circulation and climate sensitivity.” AAW acknowledges support from an National Science Foundation AGS Postdoctoral Research Fellowship under Award 1433251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison A. Wing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wing, A.A., Emanuel, K., Holloway, C.E. et al. Convective Self-Aggregation in Numerical Simulations: A Review. Surv Geophys 38, 1173–1197 (2017). https://doi.org/10.1007/s10712-017-9408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-017-9408-4

Keywords

Navigation