Skip to main content

Advertisement

Log in

Glaciers in the Earth’s Hydrological Cycle: Assessments of Glacier Mass and Runoff Changes on Global and Regional Scales

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Changes in mass contained by mountain glaciers and ice caps can modify the Earth’s hydrological cycle on multiple scales. On a global scale, the mass loss from glaciers contributes to sea-level rise. On regional and local scales, glacier meltwater is an important contributor to and modulator of river flow. In light of strongly accelerated worldwide glacier retreat, the associated glacier mass losses raise concerns over the sustainability of water supplies in many parts of the world. Here, we review recent attempts to quantify glacier mass changes and their effect on river runoff on regional and global scales. We find that glacier runoff is defined ambiguously in the literature, hampering direct comparison of findings on the importance of glacier contribution to runoff. Despite consensus on the hydrological implications to be expected from projected future warming, there is a pressing need for quantifying the associated regional-scale changes in glacier runoff and responses in different climate regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdalati W, Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J, Koerner R (2004) Elevation changes of ice caps in the Canadian Arctic Archipelago. J Geophys Res 109 (F04007). doi:10.1029/2003JF000045

  • Adalgeirsdottir G, Johannesson T, Bjornsson H, Palsson F, Sigurdsson O (2006) Response of Hofsjokull and southern Vatnajokull, Iceland, to climate change. J Geophys Res 111(F03001). doi:10.1029/2005JF000388

  • Adhikari S, Marshall SJ (2012) Glacier volume-area relation for high-order mechanics and transient glacier states. Geophys Res Lett 39(L16505). doi:10.1029/2012GL052712

  • Anderson B, MacKintosh A, Stumm D, George L, Kerr T, Winter-Billington A, Fitzsimons S (2010) Climate sensitivity of a high-precipitation glacier in New Zealand. J Glaciol 56(195):114–128

    Google Scholar 

  • Arendt A, Echelmeyer K, Harrison W, Lingle C, Valentine VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 297:382–386

    Google Scholar 

  • Arendt A et al (2012) Randolph glacier inventory: a dataset of global glacier outlines version: 2.0. GLIMS Technical Report

  • Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102:20355–20362

    Google Scholar 

  • Bahr DB, Dyurgerov M, Meier MF (2009) Sea-level rise from glaciers and ice caps: a lower bound. Geophys Res Lett 36:L03501. doi:10.1029/2008GL036309

    Google Scholar 

  • Berthier E, Schiefer E, Clarke GKC, Menounos B, Remy F (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geosci 3:92–95

    Google Scholar 

  • Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA (2013) Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geo 6:274–278. doi:10.1038/ngeo1746

    Google Scholar 

  • Bjornsson H (2002) Subglacial lakes and jokulhlaups in Iceland. Global Planet Change 35:255–271

    Google Scholar 

  • Bjornsson H, Palsson F, Gudmundsson S, Magnusson E, Adalgeirsdottir G, Johannesson T, Berthier E, Sigurdsson O, Thorsteinsson T (2013) Contribution of Icelandic ice caps to sea level rise: trends and variability since the Little Ice Age. Geophys Res Lett 40:1–5. doi:10.1002/grl.50278

    Google Scholar 

  • Bolch T, Sandberg Sørensen L, Simonsen SB, Molg N, Machguth H, Rastner P, Paul F (2013) Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys Res Lett 40:875–881. doi:10.1002/grl.50270

    Google Scholar 

  • Braithwaite RJ (2002) Glacier mass balance: the first 50 years of international monitoring. Progress in Phys Geogr 26(1):76–95

    Google Scholar 

  • Braithwaite RJ, Zhang Y (1999) Modelling changes in glacier mass balance that may occur as a result of climate changes. Geogr Ann 81A(4):489–496

    Google Scholar 

  • Braithwaite RJ, Zhang Y (2000) Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J Glaciol 46(152):7–14

    Google Scholar 

  • Braun LN, Weber M, Schulz M (2000) Consequences of climate change for runoff from Alpine regions. Ann Glaciol 31(1):19–25

    Google Scholar 

  • Bring A, Destouni G (2011) Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic. Ambio 40:361–369

    Google Scholar 

  • Burgess EW, Forster RR, Larsen CF (2013) Flow velocities of Alaskan glaciers. Nat Commun 4:2146. doi:10.1038/ncomms3146

    Google Scholar 

  • Carenzo M, Pellicciotti F, Rimkus S, Burlando P (2009) Assessing the transferability and robustness of an enhanced temperature-index glacier melt model. J Glaciol 55(190):258–274

    Google Scholar 

  • Casassa G, Rivera A, Schwikowski M (2006) Glacier mass balance data for southern South America (30°S - 56°S)”. KNIGHT, P.G., ed., Glacier Science and Environmental Change, Blackwell, Oxford, UK, In, pp 239–241

    Google Scholar 

  • Chen J, Ohmura A (1990) On the influence of Alpine glaciers on runoff. In: Lang H, Musy A (Eds) Hydrology in Mountainous Regions I, IAHS Publ 193: 117-125

  • Chen JL, Tapley BD, Wilson CR (2006) Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet Sci Lett 248(1–2):368–378

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins ER (2007) Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys Res Lett 34:L22501. doi:10.1029/2007GL031871

    Google Scholar 

  • Clarke GKC, Anslow FS, Jarosch AH, Radić V, Menounos B, Bolch T, Berthier E (2012) Ice volume and subglacial topography for western Canadian glaciers from mass balance fields, thinning rates, and a bed stress model. J Clim, e-View. doi:10.1175/JCLI-D-12-00513.1

    Google Scholar 

  • Cogley JG (2003) GGHYDRO—global hydrographic data, release 2.3. Trent Technical Note 2003-1, Department of Geography, Trent University, Peterborough, Ont. [http://www.trentu.ca/geography/glaciology.]

  • Cogley JG (2005) Mass and energy balances of glaciers and ice sheets, in M. G. Anderson, ed., Encyclopedia of Hydrological Sciences, p 2555–2573

  • Cogley JG (2009a) A more complete version of the World Glacier Inventory. Ann Glaciol 50(53):32–38

    Google Scholar 

  • Cogley JG (2009b) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50(50):96–100

    Google Scholar 

  • Cogley JG (2011) The future of the world’s climate (2011) Chapter 8

  • Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M (2011) Glossary of glacier mass balance and related terms, technical documents in hydrology No. 86, UNESCO-IHP, Paris

  • Colgan W, Pfeffer WT, Rajaram H, Abdalati W, Balog J (2012) Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, c. 2020. The Cryosphere 6:1395–1409. doi:10.5194/tc-6-1395-2012

    Google Scholar 

  • Collier E, Mölg T, Maussion F, Scherer D, Mayer C, Bush ABG (2013) High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram. The Cryosphere Discuss 7:103–144. doi:10.5194/tcd-7-103-2013

    Google Scholar 

  • Comeau LEL, Pietroniro A, Demuth MN (2009) Glacier contribution to the North and South Saskatchewan Rivers. Hydrol Process 23:2640–2653. doi:10.1002/hyp.7409

    Google Scholar 

  • de Woul M, Hock R (2005) Static mass balance sensitivity of Arctic glaciers and ice caps using a degree-day approach. Ann Glaciol 42:217–224

    Google Scholar 

  • Deponti A, Pennati V, de Biase L, Maggi V, Berta F (2006) A new fully three-dimensional numerical model for ice dynamics. J Glaciol 52(178):365–377

    Google Scholar 

  • Dowdeswell JA, Bassford RP, Gorman MR, Williams M, Glazovsky AF, Macheret YY, Shepherd AP, Vasilenko YV, Savatyuguin LM, Hubberten H-W, Miller H (2002) Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya. Russian High Arctic. J Geophys Res 107:B4. doi:10.1029/2000/JB000129

    Google Scholar 

  • Dowdeswell J, Benham J, Strozzi T, Hagen JO (2008) Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet. Svalbard. J Geophys Res 113:F03022. doi:10.1029/2007JF000905

    Google Scholar 

  • Dyurgerov, MB (2002) Glacier mass balance and regime: data of measurements and analysis. In: Meier, M. F. and Armstrong, R., Institute of Arctic and Alpine Research 55, University of Colorado, Boulder

  • Dyurgerov MB (2003) Observational evidence of accelerated glacier wastage: Uncertainty in prediction. Workshop on Assessing Global Glacier Recession, 16–17 March 2003, Boulder: World Data Center for Glaciology

  • Dyurgerov MB (2010) Reanalysis of Glacier Changes: from the IGY to the IPY, 1960-2008. Data of Glaciological Studies 108:1–116

    Google Scholar 

  • Dyurgerov MB, Carter CL (2004) Observational Evidence of Increases in Freshwater Inflow to the Arctic Ocean Arctic. Arct Antarct Alp Res 36(1):117–122

    Google Scholar 

  • Dyurgerov MB, Meier MF (1997a) Mass balance of mountain and subpolar glaciers: a new global assessment for 1961–1990. Arct Antarct Alp Res 29:379–391

    Google Scholar 

  • Dyurgerov MB, Meier MF (1997b) Year-to-year fluctuation of global mass balance of small glaciers and their contribution to sea level changes. Arct Antarct Alp Res 29:392–402

    Google Scholar 

  • Dyurgerov MB, Meier MF (2005) Glaciers and the Changing Earth System: a 2004 Snapshot, Occasional Paper 58 Institute of Arctic and Alpine Research. University of Colorado, Boulder 118p

    Google Scholar 

  • Dyurgerov MB, Meier MF, Bahr DB (2009) A new index of glacier area change: a tool for glacier monitoring. J Glaciol 55(192):710–716

    Google Scholar 

  • Fleming SJ, Clarke GKC (2003) Glacial control of water resource and related environmental responses to climate warming: empirical analysis using historical streamflow data from northwestern Canada. Canadian Water Resources Journal 28(1):69–86

    Google Scholar 

  • Fountain AG, Tangborn WV (1985) The effect of glaciers on streamflow variations. Water Resour Res 21(4):579–586

    Google Scholar 

  • Gardner AS, Moholdt G, Wouters B, Wolken G, Burgess DO, Sharp MJ, Cogley JG, Braun C, Labine C (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 437:357–360

    Google Scholar 

  • Gardner A, Moholdt G, Cogley JG, Wouters B, Arendt A, Wahr J, Berthier E, Hock R, Pfeffer T, Kaser G, Ligtenberg S, Bolch T, Sharp M, Hagen JO, van den Broeke M, Paul F (2013) A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 340:852–857. doi:10.1126/science.1234532

    Google Scholar 

  • Giesen RH, Oerlemans J (2013) Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Clim Dyn doi. doi:10.1007/s00382-013-1743-7

    Google Scholar 

  • Gleckler PJK, Taylor E, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:L06711. doi:10.1029/2007JD008972

    Google Scholar 

  • Gregory JM, Oerlemans J (1998) Simulated future sea level sea level rise due to glacier melt based on regionally and seasonally resolved temperature changes. Nature 391:474–476

    Google Scholar 

  • Hagg W, Braun LN, Weber M, Becht M (2006) Runoff modelling in glacierized Central Asian catchments for present-day and future climate. Nord Hydrol 37:93–105

    Google Scholar 

  • Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008) An integrated model for the assessment of global water resources - Part 1: model description and input meteorological forcing. Hydrol Earth Syst Sci 12:1007–1025

    Google Scholar 

  • Hirabayashi Y, Kanae S, Struthers I, Oki T (2005) A 100-year (1901-2000) global retrospective estimation of the terrestrial water cycle. J Geophys Res 110:D19101. doi:10.1029/2004JD005492

    Google Scholar 

  • Hirabayashi Y, Kanae S, Masude K, Motoya K, Döll P (2008) A 59-year (1948-2006) global near-surface meteorological data set for land surface models. Part I: development of daily forcing and assessment of precipitation intensity. Hydrological Research Letters 2:36–40. doi:10.3178/HRL.2.36

    Google Scholar 

  • Hirabayashi Y, Doll P, Kanea S (2010) Global-scale modeling of glacier mass balances for water resources assessments: glacier mass changes between 1948 and 2006. J Hydrol 390(3–4):12

    Google Scholar 

  • Hirabayashi Y, Zhang Y, Watanabe S, Koirala S, Kanae S (2013) Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2. Hydrological Research Letters 7(1):6–11. doi:10.3178/HRL.7.6

    Google Scholar 

  • Hock R (2003) Temperature index melt modelling in mountain regions. J Hydrol 282(1–4):104–115. doi:10.1016/S0022-1694(03)00257-9

    Google Scholar 

  • Hock R (2005) Glacier melt: a review on processes and their modelling. Prog in Phys Geogr 29(3):362–391

    Google Scholar 

  • Hock R, Jansson P (2005) Modelling glacier hydrology. In: Anderson, M. G. and J. McDonnell (Eds.). Enzyclopedia of Hydrological Sciences, John Wiley & Sons, Ltd, hichester. 4: 2647–2655

  • Hock R, Jansson P, Braun L (2005) Modelling the response of mountain glacier discharge to climate warming. In: Huber UM, Reasoner MA, Bugmann H (eds) Global Change and Mountain Regions - A State of Knowledge Overview. Springer, Dordrecht, pp 243–252

    Google Scholar 

  • Hock R, de Woul M, Radić V, Dyurgerov M (2009) Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys Res Lett 36:L07501. doi:10.1029/2008GL037020

    Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial Ecosystems. Ecol Monogr 78(1):41–67

    Google Scholar 

  • Hood E, Berner L (2009) The effect of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J Geophys Res 114:G03001. doi:10.1029/2009JG000971

    Google Scholar 

  • Hood E, Scott D (2008) Riverine organic matter and nutrients in southeast Alaska affected by glacial coverage. Nature Geosci 1:583–587

    Google Scholar 

  • Hood E, Fellman J, Spencer RGM, Hernes PJ, Edwards R, D’Amore D, Scott D (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462:1044–1047. doi:10.1038/nature08580

    Google Scholar 

  • Hopkinson C, Young GJ (1998) The effect of glacier wastage on the flow of the Bow River at Banff, Alberta, 1951-1993. Hydrol Process 12:1745–1762

    Google Scholar 

  • Horton P, Schaefli B, Mezghani A, Hingray B, Musy A (2006) Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrol Process 20:2091–2109. doi:10.1002/hyp.6197

    Google Scholar 

  • Huss M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour Res 47:W07511. doi:10.1029/2010WR010299

    Google Scholar 

  • Huss M, Farinotti D (2012) Distributed ice thickness and volume of all glaciers around the globe. J Geophys Res 117:F04010. doi:10.1029/2012JF002523

    Google Scholar 

  • Huss M, Farinotti D, Bauder A, Funk M (2008) Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol Processes 22:3888–3902. doi:10.1002/hyp.7055

    Google Scholar 

  • Huss M, Funk M, Ohmura A (2009) Strong Alpine glacier melt in the 1940 s due to enhanced solar radiation. Geophys Res Lett 36:L23501. doi:10.1029/2009GL040789

    Google Scholar 

  • Huss M, Jouvet G, Farinotti D, Bauder A (2010) Future high-mountain hydrology: a new parameterization of glacier retreat. Hydrol Earth Syst Sc 14:815–829

    Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate Change Will Affect the Asian Water Towers. Science 328:1382–1385. doi:10.1126/science.1183188

    Google Scholar 

  • Immerzeel WW, Pelliciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geosci 6:742–745. doi:10.1038/ngeo1896

    Google Scholar 

  • Ivins ER, Watkins MM, Yuan D-N, Dietrich R, Casassa G, Rlke A (2011) On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J Geophys Res 116:B02403

    Google Scholar 

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482(7386):514–518. doi:10.1038/nature10847

    Google Scholar 

  • Jansson P, Hock R, Schneider T (2003) The concept of glacier water storage - a review. J Hydrol 282(1–4):116–129. doi:10.1016/S0022-1694(03)00258-0

    Google Scholar 

  • Jarosch AH, Schoof CG, Anslow FS (2012) Restoring mass conservation to shallow ice flow models over complex terrain. The Cryosphere 7:229–240. doi:10.5194/tc-7-229-2013

    Google Scholar 

  • Jouvet G, Huss M, Blatter H, Picasso M, Rappaz J (2009) Numerical simulation of Rhonegletscher from 1874 to 2100. J Comput Phys 228(17):6426–6439. doi:10.1016/j.jcp.2009.05.033

    Google Scholar 

  • Kaser G, Fountain A, Jansson P (2002) A manual for monitoring the mass balance of mountain glaciers. UNESCO, International Hydrological Programme, Technical Documents in Hydrology, No. 59.107 pp

  • Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961-2004. Geophys Res Lett 33:L19501

    Google Scholar 

  • Kaser G, Grosshauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci U S 107:20223–20227. doi:10.1073/pnas.1008162107

    Google Scholar 

  • Klok EJ, Oerlemans J (2002) Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher. Switzerland. J Glaciology 48(163):505–518

    Google Scholar 

  • Kobierska F, Jonas T, Zappa M, Bavay M, Magnusson J, Bernasconi SM (2013) Future runoff from a partly glacierized watershed in Central Switzerland: a two-model approach. Adv Water Resour 55:204–214

    Google Scholar 

  • Koboltschnig GR, Schoner Wolfgang, Zappa M, Kroisleitner C, Holzmann H (2008) Runoff modelling of the glacierized Alpine Upper Salzach basin (Austria): multi-criteria result validation. Hydrol Process 22:3950–3964. doi:10.1002/hyp.7112

    Google Scholar 

  • Koboltschnik GR, Schoner WS, Zappa M, Holzmann H (2007) Contribution of glacier melt to stream runoff: if the climatically extreme summer of 2003 had happened in 1979. Ann Glaciol 46:303–308

    Google Scholar 

  • Konz M, Seibert J (2010) On the value of glacier mass balances for hydrological model calibration. J Hydrol 385:238–246. doi:10.1016/j.jhydrol.2010.02.025

    Google Scholar 

  • Kyle RE, Brabets TB (2001) Water temperature of streams in the Cook Inlet basin, Alaska, and implications of climate change. US Geological Survey Water-Resources Investigation Report 01-4109

  • Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann Glaciol 46:177–184

    Google Scholar 

  • Lambrecht A, Mayer C (2009) Temporal variability of the non-steady contribution from glaciers to water discharge in western Austria. J Hydrol 376:353–361

    Google Scholar 

  • Lang H (1986) Forecasting meltwater runoff from snow-covered areas and from glacier basins. In Kraijenoff DA, Moll JR (Eds) River Flow Modelling and Forecasting. Reidel Publishing. Dordrecht pp 99–127

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground, in Solomon, S., et al., eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 337–383. Cambridge University Press, Cambridge

  • Linsbauer A, Paul F, Haeberli W (2012) Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: a new, fast and robust approach. J Geophys Res 117:F03007. doi:10.1029/2011JF002313

    Google Scholar 

  • Lliboutry L, Morales Arnao B, Pautre A, Schneider B (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blance, Peru. I Historical failures of morainic dams, their causes and prevention. J Glaciol 18:239–254

    Google Scholar 

  • Lüthi MP (2009) Transient response of idealized glaciers to climate change. J Glaciol 55(193):918–930

    Google Scholar 

  • Luthcke SB, Arendt AA, Rowlands DD, McCarthy JJ, Larsen CF (2008) Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J Glaciol 54(188):767–777

    Google Scholar 

  • MacDougall AH, Flowers GE (2011) Spatial and temporal transferability of a distributed energy-balance glacier melt-model. J Clim 24(5):1480–1498

    Google Scholar 

  • Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere 6:1295–1322. doi:10.5194/tc-6-1295-2012

    Google Scholar 

  • Matsuo K, Heki K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290:30–36

    Google Scholar 

  • McNabb B, Hock R, O’Neel S, Rasmussen LA, Ahn Y, Conway H, Herreid S, Joughin I, Pfeffer T, Smith B, Truffer M (2012) Using surface velocities to infer ice thickness and bed topography: a case study at Columbia Glacier. Alaska. J Glaciol 58(212):1151–1164. doi:10.3189/2012JoG11J249

    Google Scholar 

  • Meier M (1984) Contribution of Small Glaciers to Global Sea Level. Science 226(4681):1418–1421. doi:10.1126/science.226 4681.1418

    Google Scholar 

  • Meier MF, Tangborn WV (1961) Distinctive characteristics of glacier runoff. US Geol Surv Prof Pap 424(B):14–16

    Google Scholar 

  • Meier MF, Dyurgerov MB, Rick U, O’Neel S, Pfeffer WT, Anderson AS, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317(5841):1064–1067. doi:10.1126/science.1143906

    Google Scholar 

  • Mercanton PL ed. (1916) Vermessungen am Rhonegletscher/Mensuration au glacier du Rhone: 1874–1915. Neue Denkschr Schweiz Naturforsch Ges 52

  • Mernild S, Lipscomp W, Bahr D, Radić V, Zemp M (2013) Global glacier retreat: A revised assessment of committed mass losses and sampling uncertainties. The Cryosphere (in press)

  • Milner AM, Knudsen EE, Soiseth C, Robertson AL, Schell D, Phillips IT, Magnusson K (2000) Colonization and development of stream communities across a 200-year gradient in Glacier Bay National Park, Alaska, USA. Can J of Fish Aquat Sci 57(11):2319–2335

    Google Scholar 

  • Moholdt G, Nuth C, Hagen JO, Kohler J (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens Environ 114(11):2756–2767. doi:10.1016/j.rse.2010.06.008

    Google Scholar 

  • Moholdt G, Wouters B, Gardner AS (2012) Recent mass changes of glaciers in the Russian High Arctic. Geophys Res Lett. doi:10.1029/2012GL051466, in press

  • Mölg T, Kaser G (2011) A new approach to resolving climate-cryosphere relations: downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. J Geophys Res 116:D16101. doi:10.1029/2011JD015669

    Google Scholar 

  • Mölg T, Cullen NJ, Hardy DR, Winkler M, Kaser G (2009) Quantifying climate change in the tropical mid-troposphere over East Africa from glacier shrinkage on Kilimanjaro. J Clim 22:4162–4181

    Google Scholar 

  • Müller-Lemans VH, Funk M, Aellen M, Kappenberger G (1994) Langjährige massenbilanzreihen von gletschern in der Schweiz, Z. Gletscherkd Glazialgeol 30:141–160

    Google Scholar 

  • Neal EG, Walter MT, Coffeen C (2002) Linking the Pacific Decadal Oscillation to seasonal stream discharge patterns in southeast Alaska. J Hydrol 263:188–197

    Google Scholar 

  • Neal EG, Hood E, Smikrud K (2010) Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys Res Lett 37:L06404. doi:10.1029/2010GL042385

    Google Scholar 

  • Nuth C, Moholdt G, Kohler J, Hagen JO, Kääb A (2010) Svalbard glacier elevation changes and contribution to sea level rise. J Geophys Res 115:F01008. doi:10.1029/2008JF001223

    Google Scholar 

  • Oerlemans J, Fortuin JPF (1992) Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258(5079):115–117

    Google Scholar 

  • Ohmura A (2001) Physical basis for the temperature-based melt-index method. J Appl Meteorol 40(4):753–761

    Google Scholar 

  • Ohmura A (2004) Cryosphere during the twentieth century. In: Sparks, R.S.J. and Hawkesworth, C.J. (eds.) The state of the Planet: Frontiers and Challenges in Geophysics. Geophys Monogr Ser 150, AGU, Washington DC: 239–257

  • Ohmura A, Bauder A, Muller H, Kappenberger G (2007) Long-term change of mass balance and the role of radiation. Ann Glaciol 46(1):367–374

    Google Scholar 

  • Østrem G, Brugman M (1991) Glacier mass-balance measurements: a manual for field and office work. NHRI Science Report pp 224

  • Paul F, Haeberli W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys Res Lett 35:L21502. doi:10.1029/2008GL034718

    Google Scholar 

  • Picasso M, Rappaz J, Reist A, Funk M, Blatter H (2004) Numerical simulation of the motion of a two-dimensional glacier. Int J Numer Meth Engng 60:995–1009. doi:10.1002/nme.997

    Google Scholar 

  • Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci U S 106:8441–8446. doi:10.1073/pnas.0900094106

    Google Scholar 

  • Radić V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115:F01010. doi:10.1029/2009JF001373

    Google Scholar 

  • Radić V, Hock R (2011) Regional differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geo 4:91–94. doi:10.1038/NGEO1052

    Google Scholar 

  • Radić V, Hock R, Oerlemans J (2007) Volume-area scaling vs flowline modelling in glacier volume projections. Ann Glaciol 46:234–240

    Google Scholar 

  • Radić V, Hock R, Oerlemans J (2008) Analysis of scaling methods in deriving future volume evolutions of valley glaciers. J Glaciol 54(187):601–612

    Google Scholar 

  • Radić V, Bliss A, Beedlow AC, Hock R, Miles E, Cogley JG (2013) Regional and global projections of 21st century glacier mass changes in response to climate scenarios from global climate models. Clim Dyn. doi:10.1007/s00382-013-1719-7

    Google Scholar 

  • Raper SCB, Braithwaite RJ (2005) The potential for sea level rise: new estimates from glacier and ice cap area and volume distributions. Geophys Res Letters 32:L05502. doi:10.1029/2004GL021981

    Google Scholar 

  • Raper SCB, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313. doi:10.1038/nature04448

    Google Scholar 

  • Rees HG, Collins DN (2006) Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol Process 20:2157–2169

    Google Scholar 

  • Reijmer CH, Hock R (2008) A distributed energy balance model including a multi-layer sub-surface snow model. J Glaciol 54(184):61–72

    Google Scholar 

  • Rignot E, Rivera A, Casassa G (2003) Contribution of the Patagonia Icefields of South America to sea level rise. Science 302(5644):434–437. doi:10.1126/science.1087393

    Google Scholar 

  • Robinson CT, Uehlinger U, Hieber M (2001) Spatio-temporal variation in macroinvertebrate assemblages of glacial streams in the Swiss Alps. Freshwater Biol 46:1663–1672. doi:10.1046/j.1365-2427.2001.00851.x

    Google Scholar 

  • Schiefer E, Menounos B, Wheate R (2007) Recent volume loss of British Columbia glaciers, Canada. Geophys Res Lett 34:L16503. doi:10.1029/2007GL030780

  • Shepard et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi:10.1126/science.1228102

  • Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38(5–6):1191–1209. doi:10.1007/s00382-011-1057-6

    Google Scholar 

  • Stahl K, Moore RD (2006) Influence of watershed glacier coverage on summer streamflow in British Columbia. Canada. Water Resour Res 42:W06201. doi:10.1029/2006WR005022

    Google Scholar 

  • Stahl K, Moore RD, Shea JM, Hutchinson D, Cannon AJ (2008) Coupled modelling of glacier and streamflow response to future climate scenarios. Water Resour Res 44:W02422. doi:10.1029/2007WR005956

    Google Scholar 

  • Tamisiea ME, Leuliette EW, Davis JL, Mitrovica JX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett 32:L20501. doi:10.1029/2005GL023961

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. doi:10.1126/science.1099192

    Google Scholar 

  • van der Wal RSW, Wild M (2001) Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high-resolution GCM. Clim Dyn 18:359–366

    Google Scholar 

  • Weber M, Braun L, Mauser W, Prasch M (2010) Contribution of rain, snow and icemelt in the upper Danube today and in the future. Geogr Fis Din Quat 33:221–230

    Google Scholar 

  • Willis MG, Melkonian AK, Pritchard ME, Rivera A (2012) Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys Res Lett 39:L17501

    Google Scholar 

  • Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH (2010) Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H). Hydrol Earth Syst Sc 14:1–24

    Google Scholar 

  • Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501. doi:10.1029/2008GL034816

    Google Scholar 

  • Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nature Geosci 3:642–646. doi:10.1038/ngeo938

    Google Scholar 

  • Yao TD, Pu JC, Lu AX, Wang YQ, Wu WS (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China and surrounding regions. Arc Antarc Alp Res 39:642–650

    Google Scholar 

  • Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann Glaciol 50:101–111

    Google Scholar 

  • Zemp M, Jansson P, Holmlund P, Gärtner-Roer I, Kobelt T, Thee P, Haeberli W (2010) Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959-1999) – Part 2: comparison of glaciological and volumetric mass balances. The Cryosphere 4:345–357

    Google Scholar 

  • Zemp M et al (2013) Uncertainties and re-analysis of glacier mass balance measurements. The Cryosphere Discuss 7: 789–839 (accepted)

    Google Scholar 

  • Zhao Q, Ye B, Ding Y, Zhang S, Yi S, Wang J, Shangguan D, Zhao C, Han H (2013) Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environ Earth Sci 68(1):87–101. doi:10.1007/s12665-012-1718-8

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants from NSF (EAR 0943742, EAR 1039008) and NASA (NNX11AO23G, NNX11AF41G). H. Feilhauer assisted with Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Radić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radić, V., Hock, R. Glaciers in the Earth’s Hydrological Cycle: Assessments of Glacier Mass and Runoff Changes on Global and Regional Scales. Surv Geophys 35, 813–837 (2014). https://doi.org/10.1007/s10712-013-9262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9262-y

Keywords

Navigation