Skip to main content
Log in

Complementary gene interaction and xenia effect controls the seed coat colour in interspecific cross between Trifolium alexandrinum and T. apertum

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Trifolium alexandrinum (Egyptian clover) is a widely cultivated winter annual fodder. Present work deals with inheritance of the seed coat colour in segregating progenies of the interspecific cross between T. alexandrinum and T. apertum. Although, both the parent species possessed yellow seed coat, the F1 seeds were black coloured in the reciprocal cross (T. apertum × T. alexandrinum). Seeds borne on individual F2 plants and the advancing generations segregated in yellow and black seed coat colour, which confirmed xenia effect. F2 seeds collected from individual F1 plants exhibited nine black and seven yellow segregation ratio. The segregation of the seed coat colour recorded from F3 to F5 generations revealed that yellow seed coat was true breeding (i.e. non-segregating) in this interspecific cross (including the reciprocal crosses). However, the black seeded progenies were either true breeding or segregated in nine black: seven yellow ratio or three black: one yellow ratio suggesting a complementary gene interaction or duplicate recessive epistasis. It indicated that the seed coat colour is controlled by complementary gene interaction along with xenia effect in interspecific crosses between T. alexandrinum and T. apertum. Occurrence of the complementary genes across the species could suggest T. apertum to be the progenitor of T. alexandrinum. Inheritance of seed coat colour in reference to its importance in Egyptian clover breeding is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aaronsohn A (1910) Agricultural explorations in Palestine. USDA Bur Pal Ind Bull, p 180

  • Atis I, Atak M, Can E, Mavi K (2011) Seed coat colour effects on seed quality and salt tolerance of red clover (Trifolium pratense). Int J Agric Biol 13:363–368

    Google Scholar 

  • Badr A, El-Shazly HH, Watson LE (2008) Origin and ancestry of Egyptian clover (Trifolium alexandrinum L.) as revealed by AFLP markers. Genet Resour Crop Evol 55:21–31

    Article  CAS  Google Scholar 

  • Bell JM, Shires A (1982) Composition and digestibility by pigs of hull fractions from rapeseed cultivars with yellow or brown seed coats. Can J Anim Sci 62:557–565

    Article  Google Scholar 

  • Bhaskar RB, Malaviya DR, Roy AK, Kaushal P (2002) Evaluation of exotic Trifolium accessions for disease incidence and resistance. In: Abstr. Nat. symp on grassland and fodder research in the new millennium, held at IGFRI, Jhansi. Range Management Society of India, Jhansi, pp 31–32

    Google Scholar 

  • Bobrov EG (1947) Vidi Kleverov URSS (in Russian). Acta Inst Bot N Acad Sci USSR Ser 1:164–336

    Google Scholar 

  • Bortnem R, Boe A (2003) Colour index for red clover seed. Crop Sci 43:2279–2283

    Article  Google Scholar 

  • Caldas GV, Blair MW (2009) Inheritance of seed condensed tannins and their relationship with seed-coat color and pattern genes in common bean (Phaseolus vulgaris L.). Theor Appl Genet 119:131–142. https://doi.org/10.1007/s00122-009-1023-4

    Article  CAS  PubMed  Google Scholar 

  • Cardador MA, Castano TE, Loarca PG (2002) Antimutagenic activity of natural phenolic compounds present in common bean (Phaseolus vulgaris) against aflatoxin B1. Food Addit Contam 19:62–69

    Article  CAS  Google Scholar 

  • Chen BY, Heneen WK (1992) Inheritance of seed color in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica 59:157–163

    Article  Google Scholar 

  • Denney JO (1992) Xenia includes metaxenia. Hortscience 27:722–728

    Article  Google Scholar 

  • Dooner HK, Robbins TR, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25:173–199

    Article  CAS  PubMed  Google Scholar 

  • Dueñas M, Estrella I, Hernandez T (2004) Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur Food Res Technol 219:116–123

    Article  CAS  Google Scholar 

  • Dymond JR (1921) Colour characteristics of red clover seed. In: Proc. association of official seed analysts of North America, Vol.12/13 (JULY 1921). Association of Official Seed Analysts and the Society of Commercial Seed Technologists (SCST). pp. 30–31

  • Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium–Leguminosae). Mol Phylogenet Evol 39:688–705

    Article  CAS  PubMed  Google Scholar 

  • Evans AM (1976) Clovers. In: Simmonds NW (ed) Evolution of crop plants. Longman, London

    Google Scholar 

  • Heneen WK, Jørgensen RB (2001) Cytology, RAPD, and seed color of progeny plants from Brassica rapa-alboglabra aneuploids and development of monosomic addition lines. Genome 44:1007–1021

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Kaur KP, Kalia A, Rani U, Kahlon JG, Sharma R, Malaviya D, Kapoor R, Sandhu JS (2017) Generation of interspecific hybrids between Trifolium vesiculosum and T. alexandrinum using embryo rescue. Euphytica 213:253. https://doi.org/10.1007/s10681-017-2042-x

    Article  Google Scholar 

  • Kaushal P, Malaviya DR, Roy AK, Kumar B, Tiwari A (2005) Trifolium alexandrinum × T. resupinatum—interspecific hybrids developed through embryo rescue. Plant Cell Tissue Organ Cult 83:137–144

    Article  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Li YG, Tanner G, Larkin P (1996) The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70:89–101

    Article  CAS  Google Scholar 

  • Li J, Chen L, Liang Y, Ye X, Liu L (2003) Research and commercial application of the complete dominance yellow-seeded gene in Brassica napus L. In: Proc. 11th International Rapeseed Congress, Copenhagen. Denmark vol 1, pp 202–204

  • Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J et al (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genom 2013:579. https://doi.org/10.1186/1471-2164-14-579

    Article  CAS  Google Scholar 

  • Maatooq GT (1997) Trifolexin: a new flavanonol derivative from Trifolium alexandrinum seeds. Mansoura J Pharm Sci 13:70–78

    CAS  Google Scholar 

  • Malaviya DR, Roy AK, Kaushal P, Kumar B, Tiwari A (2004a) Development and characterization of interspecific hybrids of Trifolium alexandrinum × T. apertum using embryo rescue. Plant Breed 123:536–542

    Article  CAS  Google Scholar 

  • Malaviya DR, Roy AK, Kaushal P, Tiwari A (2004b) Affinity between Trifolium alexandrinum and T. apertum—cytological investigation in embryo rescued hybrid. Cytologia 69:425–429

    Article  Google Scholar 

  • Malaviya DR, Kumar B, Roy AK, Kaushal P, Tiwari A (2005) Estimation of variability for isozymes of five enzyme systems among wild and cultivated species of Trifolium. Genet Resour Crop Evol 52:967–976

    Article  CAS  Google Scholar 

  • Malaviya DR, Roy AK, Kaushal P, Kumar B, Tewari A (2008) Genetic similarity among Trifolium species based on isozyme banding pattern. Plant Syst Evol 276:125–136

    Article  CAS  Google Scholar 

  • Malaviya DR, Yadav A, Roy AK, Kaushal P, Chakraborti M (2012) IL-11-239 (IC0593646; INGR12009), a Berseem (Trifolium alexandrinum) germplasm with Black (dark tan) seed against normal yellow seed. Indian J Plant Genet Resour 25:318–319

    Google Scholar 

  • Malaviya DR, Roy AK, Kaushal P, Chakraborti M, Yadav A, Khare A, Dhir R, Khairnar D, George GP (2018) Interspecific compatibility barriers, development of interspecific hybrids through embryo rescue and lineage of Trifolium alexandrinum (Egyptian clover)—important tropical forage legume. Plant Breed 137:655–672

    Article  CAS  Google Scholar 

  • Martínez CJ, Loarca-Pina G, Ortız GD (2003) Antimutagenic activity of phenolic compounds, oligosaccharides and quinolizidinic alkaloids from Lupinus campestris seeds. Food Addit Contam 20:940–948

    Article  CAS  PubMed  Google Scholar 

  • Mohamed KM, Ohtani K, Kasai R, Yamasaki K (1995) Oleanene glycosides from seeds of Trifolium alexandrinum. Phytochemistry 40:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Mohamed KM, Mohamed MH, Ohtani K, Kasai R, Yamasaki K (1999) Megastigmane glycosides from seeds of Trifolium alexandrinum. Phytochemistry 50:859–862

    Article  CAS  Google Scholar 

  • Mohamed KM, Hassaneana HA, Ohtanib K, Kasaib R, Yamasakib K (2000) Chalcanol glucosides from seeds of Trifolium alexandrinum. Phytochemistry 53:401–404

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni SR, Goud IS, Sheshaiah KC, Dalawai N, Hosamani M (2017) Genetics of seed colour in sunflower (Helianthus annuus L.). Int J Pure Appl Biosci 5:1207–1214. https://doi.org/10.18782/2320-7051.2749

    Article  Google Scholar 

  • Naumann HD, Muir JP, Lambert BD, Tedeschi LO, Kothmann MM (2013) Condensed tannins in the ruminant environment: a perspective on biological activity. J Agric Sci 1:8–20

    Google Scholar 

  • Ndakidemi PA, Dakora FD (2003) Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct Plant Biol 30:729–745

    Article  Google Scholar 

  • Oigiangbe NO, Onigbinde AO (1996) The association between some physicochemical characteristics and susceptibility of cowpea (Vigna unguiculata (L.) Walp) to Callasobruchus maculates (F). J Stored Prod Res 32:7–11

    Article  CAS  Google Scholar 

  • Oppenheimer HR (1959) The origin of Egyptian clover with critical revision of some related species. Bull Res Counc Isr 7D:202–221

    Google Scholar 

  • Putiyevsky E, Katznelson J, Zohary M (1975) Cytogenetic studies in Trifolium spp. related to Berseem. IV. The relationships in the Alexandrinum and Vavilovii crossability groups and the origin of cultivated Berseem. Theor Appl Genet 45:355–362

    Article  Google Scholar 

  • Ricciardi L, Filippetti A, DePace C, Marzano CF (1985) Inheritance of seed coat colour in broad bean (Vicia faba L.). Euphytica 34:43–51

    Article  Google Scholar 

  • Roy AK, Malaviya DR, Kaushal P, Kumar B, Tiwari A (2004) Interspecific hybridization of T. alexandrinum with T. constantinopolitanum using embryo rescue. Plant Cell Rep 22:605–610

    Article  CAS  Google Scholar 

  • Sharaf M (2008) Chemical constituents from the seeds of Trifolium alexandrinum. Nat Prod Res 22:1620–1623

    Article  CAS  PubMed  Google Scholar 

  • Slattery HD, Atwell BJ, Kuo J (1982) Relationship between colour, phenolic content and impermeability in the seed coat of various Trifolium subterraneum L. genotypes. Ann Bot 50:373–378

    Article  Google Scholar 

  • Slominski BA, Campbell LD, Guenter W (1994) Carbohydrates and dietary fiber components of yellow-seeded and brown-seeded canola. J Agric Food Chem 42:704–707

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217

    Article  CAS  PubMed  Google Scholar 

  • Van Deynze AE, Beversdorf WD, Pauls KP (1993) Temperature effects on seed color in black- and yellow-seeded rapeseed. Can J Plant Sci 73:383–387

    Article  Google Scholar 

  • Velijević N, Štrbanović R, Poštić D, Stanisavljević R, Đukanović L (2017) Effects of seed coat colour on the seed quality and initial seedling growth of red clover cultivars (Trifolium pratense). J Process Energy Agric 21:174–177

    Article  Google Scholar 

  • Verdier J, Zhaoa J, Torres-Jereza I, Gea S, Liua C, Hea X, Mysore KS, Dixon RA, Udvardi MK (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. PNAS 109:1766–1771. https://doi.org/10.1073/pnas.1120916109

    Article  PubMed  Google Scholar 

  • Verma P, Chandra A, Roy AK, Malaviya DR, Kaushal P, Pandey D, Bhatia S (2015) Development and characterization of genomic based SSR markers in berseem (Trifolium alexandrinum L.), an important multi-cut annual forage legume. Mol Breed 35:23. https://doi.org/10.1007/s11032-015-0223-7

    Article  CAS  Google Scholar 

  • Welinder KG (1992) Super family of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  • Zhi-wen L, Ting-dong F, Jin-xing T, Bao-yuan C (2005) Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet 110:303–310. https://doi.org/10.1007/s00122-004-1835-1

    Article  CAS  PubMed  Google Scholar 

  • Zohary M (1972) Origin and evolution in the genus Trifolium. Bot Notiser 125:501–511

    Google Scholar 

  • Zohary M, Heller D (1984) The genus Trifolium. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Zoric L, Merkulov L, Lukovic J, Boza P (2010) Comparative seed morphology of Trifolium L. species (Fabaceae). Periodicum Biologorum 112:263–272

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director, Indian Grassland and Fodder Research Institute, Jhansi, India for providing facilities and encouragement. Authors are also thankful to Indian Council of Agricultural Research, India for financial support.

Funding

This study was funded by Indian Council of Agricultural Research, India.

Author information

Authors and Affiliations

Authors

Contributions

DRM contributed in conceptualization, conducting experiment, data recording and analysis, manuscript writing; AKR and PK contributed in conducting experiment, data analysis, manuscript writing; AY conducted experiment and recorded data. DKP helped in data analysis and manuscript writing.

Corresponding author

Correspondence to D. R. Malaviya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaviya, D.R., Roy, A.K., Kaushal, P. et al. Complementary gene interaction and xenia effect controls the seed coat colour in interspecific cross between Trifolium alexandrinum and T. apertum. Genetica 147, 197–203 (2019). https://doi.org/10.1007/s10709-019-00063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-019-00063-5

Keywords

Navigation